【怎么在网页上找图片源码】【贷款表白网页源码】【获取云豹直播源码】全景分割源码_全景分割源码怎么用
1.ȫ?全景全景??ָ?Դ??
2.Panoptic-FlashOcc:目前速度和精度最优的全景占用预测网络
ȫ???ָ?Դ??
MobileSAM是年发布的一款轻量化分割模型,对前代SAM模型进行了优化,分割分割模型体积减小倍,源码源码用运行速度提升倍,全景全景同时保持了良好的分割分割分割性能。MobileSAM的源码源码用怎么在网页上找图片源码使用方式与SAM兼容,几乎无缝对接,全景全景唯一的分割分割调整是在模型加载时需稍作修改。
在环境配置方面,源码源码用创建专属环境并激活,全景全景安装Pytorch,分割分割实现代码测试。源码源码用
网页版使用中,全景全景直接在网页界面进行分割操作,分割分割展示了一些分割效果。源码源码用
提供了Predictor方法示例,包括点模式、单点与多点分割,以及前景和背景通过方框得到掩码的实现。此外,贷款表白网页源码SamAutomaticMaskGenerator方法用于一键全景分割。
关于模型转换和推理,讲解了将SAM模型转换为ONNX格式,包括量化ONNX模型的使用方法。在ONNX推理中,输入签名与SamPredictor.predict不同,需要特别注意输入格式。
总结部分指出,MobileSAM在体积与速度上的显著提升,以及与SAM相当的分割效果,对于视觉大模型在移动端的应用具有重要价值。
附赠MobileSAM相关资源,包括代码、论文、预训练模型及使用示例,供需要的开发者交流研究。
欢迎关注公众号@AI算法与电子竞赛,获取资源。
无限可能,获取云豹直播源码少年们,加油!
Panoptic-FlashOcc:目前速度和精度最优的全景占用预测网络
宣传一下小伙伴最新的工作Panoptic-FlashOcc,这是一种高效且易于部署的全景占用预测框架(基于之前工作 FlashOcc),在Occ3DnuScenes上不仅取得了最快的推理速度,也取得了最好的精度。
全景占用(Panoptic occupancy)提出了一个新的挑战,它旨在将实例占用(instance occupancy)和语义占用(semantic occupancy)整合到统一的框架中。然而,全景占用仍然缺乏高效的解决方案。在本文中,我们提出了Panoptic-FlashOcc,这是一个简单、稳健、实时的2D图像特征框架。基于FlashOcc的轻量级设计,我们的方法在单个网络中同时学习语义占用和类别感知的实例聚类,联合实现了全景占用。这种方法有效地解决了三维voxel-level中高内存和计算量大的做链接网站源码缺陷。Panoptic-FlashOcc以其简单高效的设计,便于部署,展示了在全景占用预测方面的显著成就。在Occ3D-nuScenes基准测试中,它取得了.5的RayIoU和.1的mIoU,用于语义占用,运行速度高达.9 FPS。此外,它在全景占用方面获得了.0的RayPQ,伴随着.2 FPS的快速推理速度。这些结果在速度和准确性方面都超过了现有方法的性能。源代码和训练模型可以在以下github仓库找到: / Yzichen/FlashOCC。
在本节中,我们概述了如何利用所提出的实例中心将全景属性集成到语义占用任务中。我们首先在第3.1节提供架构的概述。然后,我们在第3.2节深入到占用头,它预测每个体素的分割标签。随后,2020夹娃娃源码在第3.3节中,我们详细阐述了中心度头,它被用来生成类别感知的实例中心。最后,在第3.4节中,我们描述了全景占用处理,它作为一个高效的后处理模块,用于生成全景占用。
如图2所示,Panoptic-FlashOcc由四个主要部分组成:BEV生成、语义占用预测、中心度头和全景占用处理。BEV生成模块将环视图像转换为BEV特征[公式],其中H、W和C分别表示特征的高度、宽度和通道维度。这个转换是通过使用图像编码器、视图转换和BEV编码器来实现的,这些可以直接从[, , , ]中采纳。为了确保在边缘芯片上高效部署,我们坚持使用FlashOCC[]的配置,其中ResNet[8]被用作图像编码器,LSS[9, ]作为视图转换器,ResNet和FPN被用作BEV编码器。
语义占用预测模块以上述扁平化的BEV特征[公式]作为输入,并生成语义占用结果[公式],其中[公式]表示垂直于BEV平面的体素数量。同时,中心度头分别生成类别感知的热图[公式]和实例中心的回归张量[公式],其中[公式] 代表"thing"类别的语义数量。
最后,语义占用结果[公式]和上述实例中心信息通过全景占用处理,生成全景预测[公式]。需要注意的是,全景占用处理作为后处理步骤,不涉及任何梯度反向传播。
为确保方案轻量且易于部署,语义占用预测模块的架构直接继承自FlashOCC[]。它由一个占用头和一个channel-to-height的模块组成,能够预测"thing"和"stuff"类别的语义标签。占用头是一个子模块,包含三个2D卷积层。根据[, ]中提出的损失设置,损失函数通过引入距离感知(distance-aware)的focal loss[公式] [],改进了FlashOcc中使用的pixel-wise交叉熵损失。此外,为了增强3D语义场景完成(Semantic Scene Completion, SSC)处理遮挡区域的能力,采用了语义亲和损失 [公式] [2]和几何亲和损失 [公式]。此外,lovasz-softmax损失[公式] []也被引入到训练框架中。
我们框架中提出的centerness head,有两个目的:如图2底部中心块所示,中心度头包括中心回归头和中心热图头。两个模块都包含三个卷积层,搭配3×3的核心。Center Heatmap Head. 中心点表示对于"thing"和"stuff"的重要性已在包括目标检测[9, , , ]、实例分割[6]和全景分割[3, ]等多项研究中得到广泛证明。在训练过程中,gt实例中心度值使用2D高斯分布进行编码,其标准差等于标注实例的对角线大小。focal loss被用来最小化预测的class-aware热力图[公式]与对应gt之间的差异。
全景占用处理模块充当实例标签的分配模块,设计得既简单又有效。它完全依赖于矩阵运算和逻辑运算,不包含任何可训练参数。这种设计使得全景占用处理的实现直接而高效。
给定class-aware热力图[公式],我们通过局部最大置信度提取候选实例中心索引。具体是将maxpool应用于[公式],kernel大小为3×3,找到那些被maxpool筛选出的索引。这个过程类似于目标检测中的非极大值抑制(NMS)。随后,保留置信度最高的前个索引,并使用顺序得分阈值[公式](设置为0.3)来过滤置信度低的索引。最后,我们获得了[公式]个实例中心索引提案[公式],其中[公式]、[公式]和[公式]分别代表沿[公式]、[公式]和[公式]轴的索引。[公式]的值对应于相应实例的语义标签。使用中心回归张量[公式],我们可以进一步获得与精确的3D位置和语义标签配对的实例中心提案,表示为[公式]:
[公式]
这里的[公式] 和 [公式] 分别代表沿 [公式] 轴和 [公式] 轴的体素大小,[公式] 是沿 [公式] 轴的感知范围。
我们使用一个简单的最近邻分配模块来确定[公式]中每个体素的实例ID。Algorithm 1给出了相关处理的伪代码。给定语义占用[公式]和实例中心[公式]作为输入,最近邻分配模块输出全景占用[公式]。首先,我们将实例ID号[公式]初始化为0。对于语义标签中的每个类别[公式](共有[公式]个语义类别),我们首先收集在[公式]中值为[公式]的索引集[公式]。然后,我们根据[公式]是否属于“stuff”对象或“thing”对象,采取不同的处理方式。
这些结果在速度和准确性方面都超过了现有方法的性能。在具有挑战性的Occ3DnuScenes测试中,Panoptic-FlashOcc不仅取得了最快的推理速度,也取得了最好的精度。这使得它成为目前速度和精度最优的全景占用预测网络。
总结:本文介绍了Panoptic-FlashOcc,这是一种高效且易于部署的全景占用预测框架。它基于已建立的FlashOcc,通过整合centerness head和全景占用处理,将语义占用增强为全景占用。Panoptic-FlashOcc在具有挑战性的Occ3DnuScenes测试中不仅取得了最快的推理速度,也取得了最好的精度。