1.在离线混部-Koordinator Cpu Burst 特性 源码调研
2.深入理解kubernetes(k8s)网络原理之五-flannel原理
3.k8s emptyDir 源码分析
4.Kubernetes —— Pod 自动水平伸缩源码剖析(上)
5.NodeController 源码分析
6.KubeVirt网络源码分析
在离线混部-Koordinator Cpu Burst 特性 源码调研
在离线混部场景下,源码Koordinator引入了Cpu Burst特性来优化CPU资源管理。解析这个特性源自Linux内核的源码CPU Burst技术,旨在处理突发的解析CPU使用需求,减少CPU限流带来的源码影响。cgroups的解析袋鼠云源码下载参数如cpu.share、cpu.cfs_quota_us和cpu.cfs_burst,源码分别控制了CPU使用率、解析配额和突发缓冲效果。源码在Kubernetes中,解析资源请求(requests.cpu)和限制(limits.cpu)通过这些参数来实现动态调整,源码以保证容器间公平的解析CPU分配。
对于资源调度,源码Kubernetes的解析Bandwidth Controller通过时间片限制进程的CPU消耗,针对延迟敏感业务,源码如抖音视频服务,通过设置合理的CPU limits避免服务质量下降,同时也考虑资源的高效利用。然而,常规的限流策略可能导致容器部署密度降低,因为时间片间隔可能不足以应对突发的CPU需求。CPU Burst技术正是为了解决这个问题,通过收集未使用的CPU资源,允许在突发时使用,从而提高CPU利用率并减少throttled_time。
在Koordinator的配置中,通过configMap可以调整CPU Burst的无人机编程源码百分比,以及在负载过高时的调整策略。例如,当CPU利用率低于阈值时,允许动态扩展cfs_quota,以应对突发的CPU使用。源码中,会根据节点负载状态和Pod的QoS策略来调整每个容器的CPU Burst和cfs_quota。
总的来说,Cpu Burst特性适用于资源利用率不高且短作业较多的场景,能有效提升核心业务的CPU资源使用效率,同时对相邻容器的影响较小。在某些情况下,结合cpuset的核绑定和NUMA感知调度可以进一步减少CPU竞争。理解并灵活运用这些技术,有助于优化云计算环境中的资源分配和性能管理。
深入理解kubernetes(k8s)网络原理之五-flannel原理
flannel在Kubernetes(k8s)网络架构中扮演着关键角色,其提供多种网络模式,其中最为广泛应用的是VXLAN模式。本文旨在深入探讨VXLAN模式下flannel的运作原理,同时对UDP模式进行简要介绍。
VXLAN模式下的flannel依赖于VXLAN协议,实现跨主机Pod间的通信。这种模式下,flannel的组件工作流程涉及多个关键步骤。首先,flannel-cni文件作为CNI规范下的选股源码如何导入二进制文件,负责生成配置文件并调用其它CNI插件(如bridge和host-local),从而实现主机到主机的网络互通。flannel-cni文件并非flannel项目源码,而是位于CNI的plugins中。
在flannel-cni工作流程中,kubelet在创建Pod时,会启动一个pause容器,并获取网络命名空间。随后,它调用配置文件指定的CNI插件(即flannel),以加载相关参数。flannel读取从/subnet.env文件获取的节点子网信息,生成符合CNI标准的配置文件。接着,flannel利用此配置文件调用bridge插件,完成Pod到主机、同主机Pod间的数据通信。
kube-flannel作为Kubernetes的daemonset运行,主要负责跨节点Pod通信的编织工作。它完成的主要任务包括为每个节点创建VXLAN设备,并更新主机路由。当节点添加或移除时,kube-flannel会相应地调整网络配置。在VXLAN模式下,每个节点上的kube-flannel会与flanneld守护进程进行通信,以同步路由信息。手机链接定位源码
在UDP模式下,每个节点运行flanneld守护进程,参与数据包转发。flanneld通过Unix域套接字与本地flanneld通信,而非通过fdb表和邻居表同步路由信息。当节点新增时,kube-flannel会在节点间建立路由条目,并调整网络配置以确保通信的连续性。
flannel在0.9.0版本前,使用不同策略处理VXLAN封包过程中可能缺少的ARP记录和fdb记录。从0.9.0版本开始,flannel不再监听netlink消息,优化了内核态与用户态的交互,从而提升性能。
通过理解flannel的运行机制,可以发现它在VXLAN模式下实现了高效的跨节点Pod通信。flannel挂载情况不影响现有Pod的通信,但新节点或新Pod的加入需flannel参与网络配置。本文最后提示读者,了解flannel原理后,可尝试自行开发CNI插件。
k8s emptyDir 源码分析
在Kubernetes的Pod资源管理中,emptyDir卷类型在Pod被分配至Node时即被分配一个目录。该卷的生命周期与Pod的生命周期紧密关联,一旦Pod被删除,与之相关的爬虫无法爬取源码emptyDir卷亦会随之永久消失。默认情况下,emptyDir卷采用的是磁盘存储模式,若用户希望改用tmpfs(tmp文件系统),需在配置中添加`emptyDir.medium`的定义。此类型卷主要用于临时存储,常见于构建开发、日志记录等场景。
深入源码探索,`emptyDir`相关实现位于`/pkg/volume/emptydir`目录中,其中`pluginName`指定为`kubernetes.io/empty-dir`。在代码中,可以通过逻辑判断确定使用磁盘存储还是tmpfs模式。具体实现中包含了一个核心方法`unmount`,该方法负责处理卷的卸载操作,确保资源的合理释放与管理,确保系统资源的高效利用。
综上所述,`emptyDir`卷作为Kubernetes中的一种临时存储解决方案,其源码设计简洁高效,旨在提供灵活的临时数据存储空间。通过`unmount`等核心功能的实现,有效地支持了Pod在运行过程中的数据临时存储需求,并确保了资源的合理管理和释放。这种设计模式不仅提升了系统的灵活性,也优化了资源的利用效率,为开发者提供了更加便捷、高效的工具支持。
Kubernetes —— Pod 自动水平伸缩源码剖析(上)
ReplicaSet 控制器负责维持指定数量的 Pod 实例正常运行,这个数量通常由声明的工作负载资源对象如 Deployment 中的.spec.replicas字段定义。手动伸缩适用于对应用程序进行预调整,如在电商促销活动前对应用进行扩容,活动结束后缩容。然而,这种方式不适合动态变化的应用负载。
Kubernetes 提供了 Pod 自动水平伸缩(HorizontalPodAutoscaler,简称HPA)能力,允许定义动态应用容量,容量可根据负载情况变化。例如,当 Pod 的平均 CPU 使用率达到 %,且最大 Pod 运行数不超过 个时,HPA 会触发水平扩展。
HPA 控制器负责维持资源状态与期望状态一致,即使出现错误也会继续处理,直至状态一致,称为调协。控制器依赖 MetricsClient 获取监控数据,包括 Pod 的 CPU 和内存使用情况等。
MetricsClient 接口定义了获取不同度量指标类别的监控数据的能力。实现 MetricsClient 的客户端分别用于集成 API 组 metrics.k8s.io,处理集群内置度量指标,自定义度量指标和集群外部度量指标。
HPA 控制器创建并运行,依赖 Scale 对象客户端、HorizontalPodAutoscalersGetter、Metrics 客户端、HPA Informer 和 Pod Informer 等组件。Pod 副本数计算器根据度量指标监控数据和 HPA 的理想资源使用率,决策 Pod 副本容量的伸缩。
此篇介绍了 HPA 的基本概念和相关组件的创建过程,后续文章将深入探讨 HPA 控制器的调协逻辑。感谢阅读,欢迎指正。
NodeController 源码分析
本文主要分析NodeLifecycleController在Kubernetes v1.版本中的功能及其源码实现。NodeLifecycleController主要负责定期监控节点状态,根据节点的condition添加相应的taint标签或直接驱逐节点上的Pod。
在解释NodeLifecycleController功能之前,先了解一下taint的作用。在NodeLifecycleController中,taint的使用效果体现在节点的taint上,影响着Pod在节点上的调度。
NodeLifecycleController利用多个feature-gates进行功能扩展。在源码分析部分,我们以Kubernetes v1.版本为例,深入研究了启动方法、初始化流程、监听对象以及核心逻辑。
启动方法startNodeLifecycleController首先调用lifecyclecontroller.NewNodeLifecycleController进行初始化,并传入组件参数及两个feature-gates:TaintBasedEvictions和TaintNodesByCondition。随后调用lifecycleController.Run启动控制循环,监听包括lease、pods、nodes、daemonSets在内的四种对象。
在初始化过程中,多个默认参数被设定,如--enable-taint-manager等。NewNodeLifecycleController方法详细展示了NodeLifecycleController的结构和核心逻辑,包括taintManager和NodeLifecycleController的监听和处理机制。
Run方法是启动方法,它启动多个goroutine执行controller功能,关键逻辑包括调用多个方法来完成核心功能。
当组件启动时,若--enable-taint-manager参数为true,taintManager将启用,确保当节点上的Pod不兼容节点taint时,会将Pod驱逐。反之,已调度至该节点的Pod将保持存在,新创建的Pod需兼容节点taint以调度至该节点。
tc.worker处理来自channel的数据,优先处理nodeUpdateChannels中的数据。tc.handleNodeUpdate和tc.handlePodUpdate分别处理节点更新和Pod更新,最终调用tc.processPodOnNode检查Pod是否兼容节点的taints。
NodeLifecycleController中的nodeInformer监听节点变化,nc.doNodeProcessingPassWorker添加合适的NoSchedule taint和标签。当启用了TaintBasedEvictions特性,nc.doNoExecuteTaintingPass处理节点并根据NodeCondition添加taint,以驱逐Pod。未启用该特性时,nc.doEvictionPass将直接驱逐节点上的Pod。
nc.monitorNodeHealth持续监控节点状态,更新节点taint或驱逐Pod,并为集群中的所有节点划分zoneStates以设置驱逐速率。nc.tryUpdateNodeHealth更新节点状态数据,判断节点是否已进入未知状态。
本文综上所述,深入剖析了NodeLifecycleController的功能、实现机制以及关键逻辑,为理解和优化Kubernetes集群提供了参考。
KubeVirt网络源码分析
在KubeVirt的网络架构中,virt-launcher与虚拟机之间建立了一对一的对应关系,即在每个pod中运行一台虚拟机。本文将聚焦于网络组件的分析。
下图展示了KubeVirt的网络体系,三个实线框表示从外到里依次为:Kubernetes工作节点、工作节点上的POD、以及POD中运行的虚拟机。三个虚线框从下到上分别为:Kubernetes网络(Kubernetes CNI负责配置)、libvirt网络,以及虚拟机网络。本文仅关注libvirt网络与虚拟机网络。
在kubevirt中,LibvirtDomainManager类的preStartHook方法在虚拟机启动前执行,通过调用SetupPodNetwork方法为虚拟机准备网络环境。
SetupPodNetwork方法执行三个关键步骤,分别对应discoverPodNetworkInterface、preparePodNetworkInterfaces和StartDHCP方法。discoverPodNetworkInterface方法收集pod的网络接口信息,包括IP和MAC地址。这些信息将通过DHCP协议传递给虚拟机。为确保虚拟机能接收这些信息,preparePodNetworkInterfaces方法对容器网络进行相应调整。
此方法会启动一个只提供一个DHCP客户端的DHCP服务器(SingleClientDHCPServer)。DHCP服务提供给虚拟机的不仅仅是IP地址,还包括网关信息和路由信息。此过程确保虚拟机在KubeVirt环境中能够正常访问网络。
本文以KubeVirt 0.4.1版本的源码为例分析网络部分,后续将对更最新版本的KubeVirt virt-lancher网络功能进行深入探索。
2024-11-27 17:35
2024-11-27 17:20
2024-11-27 17:10
2024-11-27 17:06
2024-11-27 16:39
2024-11-27 16:15
2024-11-27 15:21
2024-11-27 15:01