皮皮网

【汕头wap源码】【家园垃圾分类php源码】【开创溯源码的先河】yet源码

时间:2024-11-26 22:31:52 来源:分发页面软件源码

1.yaffsYAFFS文件系统简介
2.“编译”与“编译器”是什么意思?
3.spring的编写流程(spring流程编排)
4.Yacc简介
5.bison是什么意思

yet源码

yaffsYAFFS文件系统简介

       YAFFS(Yet Another Flash File System)是一种专为NAND Flash存储器设计的嵌入式文件系统,它适用于大容量存储设备。YAFFS在GPL协议下发布,用户可免费获取其源代码,且通过其网站进行下载。

       作为一种基于日志的汕头wap源码文件系统,YAFFS提供了强大的健壮性,包括磨损平衡和掉电恢复功能。它特别针对大容量的Flash芯片进行了优化,同时在启动时间和RAM使用上也进行了优化。YAFFS在Linux和WinCE等商业产品中已被广泛应用。

       YAFFS通过日志记录机制,在更新文件系统时,可以实现数据的增量更新,大大减少了更新时间。同时,它还能在系统发生掉电时,通过日志记录恢复文件系统状态,保证数据的完整性。

       在大容量存储设备的应用中,YAFFS通过优化启动时间和RAM使用,显著提高了系统的响应速度和效率。它适用于各种需要大容量存储的设备,如移动设备、嵌入式系统、服务器等。

       总的来看,YAFFS作为一种高效的嵌入式文件系统,适用于多种大容量存储设备。它通过日志记录、磨损平衡、优化启动时间和RAM使用等功能,实现了高效率、高可靠性和高容错性,为用户提供了一种可靠、高效的数据存储解决方案。

“编译”与“编译器”是什么意思?

       编译是动词

       编译器是名词

       编译(compilation , compile)

        1、利用编译程序从源语言编写的源程序产生目标程序的过程。

        2、用编译程序产生目标程序的动作。

       编译就是把高级语言变成计算机可以识别的2进制语言,计算机只认识1和0,编译程序把人们熟悉的语言换成2进制的。

       编译程序把一个源程序翻译成目标程序的工作过程分为五个阶段:词法分析;语法分析;中间代码生成;代码优化;目标代码生成。主要是进行词法分析和语法分析,又称为源程序分析,家园垃圾分类php源码分析过程中发现有语法错误,给出提示信息。

       (1) 词法分析

       词法分析的任务是对由字符组成的单词进行处理,从左至右逐个字符地对源程序进行扫描,产生一个个的单词符号,把作为字符串的源程序改造成为单词符号串的中间程序。执行词法分析的程序称为词法分析程序或扫描器。

       源程序中的单词符号经扫描器分析,一般产生二元式:单词种别;单词自身的值。单词种别通常用整数编码,如果一个种别只含一个单词符号,那么对这个单词符号,种别编码就完全代表它自身的值了。若一个种别含有许多个单词符号,那么,对于它的每个单词符号,除了给出种别编码以外,还应给出自身的值。

       词法分析器一般来说有两种方法构造:手工构造和自动生成。手工构造可使用状态图进行工作,自动生成使用确定的有限自动机来实现。

       (2) 语法分析

       编译程序的语法分析器以单词符号作为输入,分析单词符号串是否形成符合语法规则的语法单位,如表达式、赋值、循环等,最后看是否构成一个符合要求的程序,按该语言使用的语法规则分析检查每条语句是否有正确的逻辑结构,程序是最终的一个语法单位。编译程序的语法规则可用上下文无关文法来刻画。

       语法分析的方法分为两种:自上而下分析法和自下而上分析法。自上而下就是从文法的开始符号出发,向下推导,推出句子。而自下而上分析法采用的是移进归约法,基本思想是:用一个寄存符号的先进后出栈,把输入符号一个一个地移进栈里,当栈顶形成某个产生式的一个候选式时,即把栈顶的这一部分归约成该产生式的左邻符号。

       (3) 中间代码生成

       中间代码是源程序的一种内部表示,或称中间语言。中间代码的作用是可使编译程序的结构在逻辑上更为简单明确,特别是可使目标代码的优化比较容易实现。中间代码即为中间语言程序,中间语言的开创溯源码的先河复杂性介于源程序语言和机器语言之间。中间语言有多种形式,常见的有逆波兰记号、四元式、三元式和树。

       (4) 代码优化

       代码优化是指对程序进行多种等价变换,使得从变换后的程序出发,能生成更有效的目标代码。所谓等价,是指不改变程序的运行结果。所谓有效,主要指目标代码运行时间较短,以及占用的存储空间较小。这种变换称为优化。

       有两类优化:一类是对语法分析后的中间代码进行优化,它不依赖于具体的计算机;另一类是在生成目标代码时进行的,它在很大程度上依赖于具体的计算机。对于前一类优化,根据它所涉及的程序范围可分为局部优化、循环优化和全局优化三个不同的级别。

       (5) 目标代码生成

       目标代码生成是编译的最后一个阶段。目标代码生成器把语法分析后或优化后的中间代码变换成目标代码。目标代码有三种形式:

       ① 可以立即执行的机器语言代码,所有地址都重定位;

       ② 待装配的机器语言模块,当需要执行时,由连接装入程序把它们和某些运行程序连接起来,转换成能执行的机器语言代码;

       ③ 汇编语言代码,须经过汇编程序汇编后,成为可执行的机器语言代码。

       目标代码生成阶段应考虑直接影响到目标代码速度的三个问题:一是如何生成较短的目标代码;二是如何充分利用计算机中的寄存器,减少目标代码访问存储单元的次数;三是如何充分利用计算机指令系统的特点,以提高目标代码的质量。

       编译器,是将便于人编写,阅读,维护的高级计算机语言翻译为计算机能解读、运行的低阶机器语言的程序。编译器将原始程序(Source program)作为输入,翻译产生使用目标语言(Target language)的等价程序。源代码一般为高阶语言 (High-level language), 如 Pascal、C++、Java 等,而目标语言则是汇编语言或目标机器的目标代码(Object code),有时也称作机器代码(Machine code)。

       一个现代编译器的主要工作流程如下:

       源代码 (source code) → 预处理器 (preprocessor) → 编译器 (compiler) → 汇编程序 (assembler) → 目标代码 (object code) → 连接器 (Linker) → 可执行程序 (executables)

       工作原理

       [编辑本段]

       编译是从源代码(通常为高阶语言)到能直接被计算机或虚拟机执行的目标代码(通常为低阶语言或机器语言)的翻译过程。然而,OpenPilotGCS地面站源码也存在从低阶语言到高阶语言的编译器,这类编译器中用来从由高阶语言生成的低阶语言代码重新生成高阶语言代码的又被叫做反编译器。也有从一种高阶语言生成另一种高阶语言的编译器,或者生成一种需要进一步处理的的中间代码的编译器(又叫级联)。

       典型的编译器输出是由包含入口点的名字和地址, 以及外部调用(到不在这个目标文件中的函数调用)的机器代码所组成的目标文件。一组目标文件,不必是同一编译器产生,但使用的编译器必需采用同样的输出格式,可以链接在一起并生成可以由用户直接执行的可执行程序。

       编译器种类

       [编辑本段]

       编译器可以生成用来在与编译器本身所在的计算机和操作系统(平台)相同的环境下运行的目标代码,这种编译器又叫做“本地”编译器。另外,编译器也可以生成用来在其它平台上运行的目标代码,这种编译器又叫做交叉编译器。交叉编译器在生成新的硬件平台时非常有用。“源码到源码编译器”是指用一种高阶语言作为输入,输出也是高阶语言的编译器。例如: 自动并行化编译器经常采用一种高阶语言作为输入,转换其中的代码,并用并行代码注释对它进行注释(如OpenMP)或者用语言构造进行注释(如FORTRAN的DOALL指令)。

       预处理器(preprocessor)

       作用是通过代入预定义等程序段将源程序补充完整。

       编译器前端(frontend)

       前端主要负责解析(parse)输入的源代码,由语法分析器和语意分析器协同工作。语法分析器负责把源代码中的‘单词’(Token)找出来,语意分析器把这些分散的单词按预先定义好的语法组装成有意义的表达式,语句 ,函数等等。 例如“a = b + c;”前端语法分析器看到的是“a, =, b , +, c;”,语意分析器按定义的语法,先把他们组装成表达式“b + c”,再组装成“a = b + c”的语句。 前端还负责语义(semantic checking)的检查,例如检测参与运算的变量是否是同一类型的,简单的错误处理。最终的结果常常是一个抽象的语法树(abstract syntax tree,或 AST),这样后端可以在此基础上进一步优化,处理。

       编译器后端(backend)

       编译器后端主要负责分析,优化中间代码(Intermediate representation)以及生成机器代码(Code Generation)。

       一般说来所有的编译器分析,优化,变型都可以分成两大类: 函数内(intraprocedural)还是函数之间(interprocedural)进行。很明显,函数间的分析,优化更准确,彩虹易支付源码漏洞但需要更长的时间来完成。

       编译器分析(compiler analysis)的对象是前端生成并传递过来的中间代码,现代的优化型编译器(optimizing compiler)常常用好几种层次的中间代码来表示程序,高层的中间代码(high level IR)接近输入的源代码的格式,与输入语言相关(language dependent),包含更多的全局性的信息,和源代码的结构;中层的中间代码(middle level IR)与输入语言无关,低层的中间代码(Low level IR)与机器语言类似。 不同的分析,优化发生在最适合的那一层中间代码上。

       常见的编译分析有函数调用树(call tree),控制流程图(Control flow graph),以及在此基础上的 变量定义-使用,使用-定义链(define-use/use-define or u-d/d-u chain),变量别名分析(alias analysis),指针分析(pointer analysis),数据依赖分析(data dependence analysis)等等。

       上述的程序分析结果是编译器优化(compiler optimization)和程序变形(compiler transformation)的前提条件。常见的优化和变新有:函数内嵌(inlining),无用代码删除(Dead code elimination),标准化循环结构(loop normalization),循环体展开(loop unrolling),循环体合并,分裂(loop fusion,loop fission),数组填充(array padding),等等。 优化和变形的目标是减少代码的长度,提高内存(memory),缓存(cache)的使用率,减少读写磁盘,访问网络数据的频率。更高级的优化甚至可以把序列化的代码(serial code)变成并行运算,多线程的代码(parallelized,multi-threaded code)。

       机器代码的生成是优化变型后的中间代码转换成机器指令的过程。现代编译器主要采用生成汇编代码(assembly code)的策略,而不直接生成二进制的目标代码(binary object code)。即使在代码生成阶段,高级编译器仍然要做很多分析,优化,变形的工作。例如如何分配寄存器(register allocatioin),如何选择合适的机器指令(instruction selection),如何合并几句代码成一句等等。

       编译语言与直译语言对比

       [编辑本段]

       许多人将高阶程序语言分为两类: 编译型语言 和 直译型语言 。然而,实际上,这些语言中的大多数既可用编译型实现也可用直译型实现,分类实际上反映的是那种语言常见的实现方式。(但是,某些直译型语言,很难用编译型实现。比如那些允许 在线代码更改 的直译型语言。)

       历史

       [编辑本段]

       上世纪年代,IBM的John Backus带领一个研究小组对FORTRAN语言及其编译器进行开发。但由于当时人们对编译理论了解不多,开发工作变得既复杂又艰苦。与此同时,Noam Chomsky开始了他对自然语言结构的研究。他的发现最终使得编译器的结构异常简单,甚至还带有了一些自动化。Chomsky的研究导致了根据语言文法的难易程度以及识别它们所需要的算法来对语言分类。正如现在所称的Chomsky架构(Chomsky Hierarchy),它包括了文法的四个层次:0型文法、1型文法、2型文法和3型文法,且其中的每一个都是其前者的特殊情况。2型文法(或上下文无关文法)被证明是程序设计语言中最有用的,而且今天它已代表着程序设计语言结构的标准方式。分析问题(parsing problem,用于上下文无关文法识别的有效算法)的研究是在年代和年代,它相当完善的解决了这个问题。现在它已是编译原理中的一个标准部分。

       有限状态自动机(Finite Automaton)和正则表达式(Regular Expression)同上下文无关文法紧密相关,它们与Chomsky的3型文法相对应。对它们的研究与Chomsky的研究几乎同时开始,并且引出了表示程序设计语言的单词的符号方式。

       人们接着又深化了生成有效目标代码的方法,这就是最初的编译器,它们被一直使用至今。人们通常将其称为优化技术(Optimization Technique),但因其从未真正地得到过被优化了的目标代码而仅仅改进了它的有效性,因此实际上应称作代码改进技术(Code Improvement Technique)。

       当分析问题变得好懂起来时,人们就在开发程序上花费了很大的功夫来研究这一部分的编译器自动构造。这些程序最初被称为编译器的编译器(Compiler-compiler),但更确切地应称为分析程序生成器(Parser Generator),这是因为它们仅仅能够自动处理编译的一部分。这些程序中最著名的是Yacc(Yet Another Compiler-compiler),它是由Steve Johnson在年为Unix系统编写的。类似的,有限状态自动机的研究也发展了一种称为扫描程序生成器(Scanner Generator)的工具,Lex(与Yacc同时,由Mike Lesk为Unix系统开发)是这其中的佼佼者。

       在年代后期和年代早期,大量的项目都贯注于编译器其它部分的生成自动化,这其中就包括了代码生成。这些尝试并未取得多少成功,这大概是因为操作太复杂而人们又对其不甚了解。

       编译器设计最近的发展包括:首先,编译器包括了更加复杂算法的应用程序它用于推断或简化程序中的信息;这又与更为复杂的程序设计语言的发展结合在一起。其中典型的有用于函数语言编译的Hindley-Milner类型检查的统一算法。其次,编译器已越来越成为基于窗口的交互开发环境(Interactive Development Environment,IDE)的一部分,它包括了编辑器、连接程序、调试程序以及项目管理程序。这样的IDE标准并没有多少,但是对标准的窗口环境进行开发已成为方向。另一方面,尽管近年来在编译原理领域进行了大量的研究,但是基本的编译器设计原理在近年中都没有多大的改变,它现在正迅速地成为计算机科学课程中的中心环节。

       在九十年代,作为GNU项目或其它开放源代码项目标一部分,许多免费编译器和编译器开发工具被开发出来。这些工具可用来编译所有的计算机程序语言。它们中的一些项目被认为是高质量的,而且对现代编译理论感兴趣的人可以很容易的得到它们的免费源代码。

       大约在年,SGI公布了他们的一个工业化的并行化优化编译器Pro的源代码,后被全世界多个编译器研究小组用来做研究平台,并命名为Open。Open的设计结构好,分析优化全面,是编译器高级研究的理想平台。

spring的编写流程(spring流程编排)

       springmvc工作流程

       springmvc工作流程:

       1、用户向服务端发送一次请求,这个请求会先到前端控制器DispatcherServlet(也叫中央控制器)。

       2、DispatcherServlet接收到请求后会调用HandlerMapping处理器映射器。由此得知,该请求该由哪个Controller来处理(并未调用Controller,只是得知)。

       3、DispatcherServlet调用HandlerAdapter处理器适配器,告诉处理器适配器应该要去执行哪个Controller。

       4、HandlerAdapter处理器适配器去执行Controller并得到ModelAndView(数据和视图),并层层返回给DispatcherServlet。

       5、DispatcherServlet将ModelAndView交给ViewReslover视图解析器解析,然后返回真正的视图。

       6、DispatcherServlet将模型数据填充到视图中。

       7、DispatcherServlet将结果响应给用户。

       组件说明:

       DispatcherServlet:前端控制器,也称为中央控制器,它是整个请求响应的控制中心,组件的调用由它统一调度。

       HandlerMapping:处理器映射器,它根据用户访问的URL映射到对应的后端处理器Handler。也就是说它知道处理用户请求的后端处理器,但是它并不执行后端处理器,而是将处理器告诉给中央处理器。

       HandlerAdapter:处理器适配器,它调用后端处理器中的方法,返回逻辑视图ModelAndView对象。

       ViewResolver:视图解析器,将ModelAndView逻辑视图解析为具体的视图(如JSP)。

       Handler:后端处理器,对用户具体请求进行处理,也就是我们编写的Controller类。

       spring工作流程

       写得太笼统了,不过,spring+hibernate得基本工作流是分层得.

       也许是:

       reg页面是前台表单录入视图,提交后到RegController控制器,然后其中又封装了User和Reg得vo对象,在RegController中调用UserDAOImpl和RegImpl执行数据得保存,UserDAO是接口,UserDAOImpl实现了此接口.UserDAOImpl和RegImpl使用hibernate能力进行ROM映射,保存对象到数据库.regsuccess是保存数据成功后得返回视图.

       spirngmvc需要配置控制器映射,将访问映射到控制器上,控制器调用dao或是services层得api执行业务逻辑,然后返回视图和模型对象给前置控制器,前置控制器根据返回得信息派发视图.

Spring启动流程(一)

       以java-config形式编写一个测试demo,新建一个AnnotationConfigApplicationContext,如果是XML形式使用ClassPathXmlApplicationContext;

       两者都继承了AbstractApplicationContext类,详细看下面的层次图。

       注意:在newAnnotationConfigApplicationContext()时如果未指定参数,会报运行时异常:org.springframework.context.annotation.AnnotationConfigApplicationContext@6ebca6hasnotbeenrefreshedyet

       AnnotationConfigApplicationContext的有参构造执行了3个方法,分别是自己的无参构造、register()、refresh();

       在描述前先从网上找了一个总体流程图方便了解一下大致流程,理清思路。

       在执行AnnotationConfigApplicationContext的无参构造方法前会调用父类GenericApplicationContext的无参构造方法;

       GenericApplicationContext中实例化一个DefaultListableBeanFactory,也就是说bean工厂实际上是应用上下文的一个属性;

       从上面的类层次图可以看到:应用上下文和bean工厂又同时实现了BeanFactory接口。

       前面讲到我们为了解IOC使用了Spring提供的AnnotationConfigApplicationContext作为入口展开,那Spring怎么对加了特定注解(如@Service、@Repository)的类进行读取转化成BeanDefinition对象呢?

       又如何对指定的包目录进行扫描查找bean对象呢?

       所以我们需要new一个注解配置读取器和一个路径扫描器。

       AnnotatedBeanDefinitionReader中执行了AnnotationConfigUtils中的registerAnnotationConfigProcessors(this.registry)方法,会向容器注册Sprign内置的处理器。

       registerAnnotationConfigProcessors方法中通过newRootBeanDefinition(XX.class)新建一个RootBeanDefinition(BeanDefinition的一个实现),然后调用registerPostProcessor将内置bean对应的BeanDefinition保存到bean工厂中;

       这里需要说明的是:我们刚刚一直在谈到注册bean,实际上就是将内置bean对应的beanDefinition保存到bean工厂中。那为什么要保存beanDefinition呢?因为Spring是跟据beanDefinition中对bean的描述,来实例化对象的,就算自己定义的bean也是要被解析成一个beanDefinition并注册的。

       其中最主要的组件便是ConfigurationClassPostProcessor和AutowiredAnnotationBeanPostProcessor,前者是一个beanFactory后置处理器,用来完成bean的扫描与注入工作,后者是一个bean后置处理器,用来完成@AutoWired自动注入。

       这个步骤主要是用来解析用户传入的Spring配置类,解析成一个BeanDefinition然后注册到容器中,主要源码如下:

       通过生成AnnotatedGenericBeanDefinition,然后解析给BeanDefinition的其他属性赋值,然后将BeanDefinition和beanName封装成一个BeanDefinitionHolder对象注册到bean工厂中(就是将beanName与baenDefinition封装到Map中,将beanName放到list中。Map与list都是bean工厂DefaultListableBeanFactory所维护的属性),和前面内置bean的注册相同。

       执行到这一步,register方法到此就结束了,通过断点观察BeanFactory中的beanDefinitionMap属性可以看出:this()和this.register(componentClasses)方法中就是将内置bean和我们传的配置bean的beanDefinition进行了注册,还没处理标记了@Component等注解的自定义bean。

Yacc简介

       Yacc,全称为Yet Another Compiler Compiler,是一个在Unix/Linux系统上著名的工具,专门用于生成编译器。其主要作用是生成C语言编写的语法解析器(Parser),这类解析器是编译过程中的关键组件,负责理解并解析源代码的语法规则。在Yacc的使用中,通常需要与词法分析器Lex配合,通过它们的协同工作,将解析器和词法器的输出结合,形成完整的编译器代码。

       起初,Yacc主要局限于Unix系统,但随着技术的发展,它已经成功移植到了Windows以及其他多种操作系统平台,使得更多的开发者能够在不同的环境中利用Yacc进行编译器的开发。无论是在学术研究还是工业实践中,Yacc都扮演着不可或缺的角色,它简化了编译器的创建过程,提高了开发者的工作效率。

       总的来说,Yacc是一个强大的工具,它通过生成C语言解析器,帮助开发者构建功能完备的编译器,跨平台的特性使其在现代软件开发中扮演着重要角色。通过它,程序员能够更加专注于语言的语法设计,而不是底层的编译逻辑实现。

bison是什么意思

       Bison是一种编程语言编译器,用于将Bison语言编写的源代码转换为可执行程序或库。

       Bison是GNU项目的一部分,它最初是为了支持开发自由软件而创建的。Bison的名称来自于其原始设计目标,即“Bison是一个简单的语法分析器生成器”。它主要用于生成语法分析器,这是一种用于解析计算机语言的程序。语法分析器在编译器或解释器的构造中起着关键作用,负责将输入的源代码转换为抽象语法树(AST),以便进一步处理。

       Bison使用一种类似于Yacc(Yet Another Compiler Compiler)的语法来描述输入的上下文无关文法。用户可以使用Bison的语法规则来定义他们的语言,并生成一个能够解析这种语言的语法分析器。这使得开发人员能够更专注于实现语言的语义,而无需担心语法分析器的细节。

       例如,假设我们有一个简单的编程语言,它支持整数、加法和乘法操作。我们可以使用Bison来定义这种语言的语法规则,然后生成一个语法分析器。当用户输入一段该语言的代码时,语法分析器会将其解析为AST,然后我们可以对这个AST进行进一步的处理,如计算表达式的值。

       总的来说,Bison是一个强大的工具,它使得开发人员能够更轻松地创建自己的编程语言或解析器。通过抽象出语法分析的细节,它使得开发人员能够更专注于实现语言的语义和功能。

推荐资讯
147的源码_7/16的源码

147的源码_7/16的源码

源码详细教程

源码详细教程

飞腾系统源码_飞腾系统源码怎么查看

飞腾系统源码_飞腾系统源码怎么查看

android事件源码_android事件分发源码

android事件源码_android事件分发源码

文华boll源码_文华财经boll指标

文华boll源码_文华财经boll指标

红尘西游源码_红尘西游官网

红尘西游源码_红尘西游官网

copyright © 2016 powered by 皮皮网   sitemap