1.正数的负数补码是什么?负数是什么?
2.简述表示一个二进制负数的原码、反码和补码
3.负数的码和原码、反码、正数补码相同吗?样负源码
4.正数补码和负数补码有什么不同?
5.正数的原码,补码,数的数样反码是和正庄股锁定指标源码什么?
6.原码反码补码计算
正数的补码是什么?负数是什么?
一、正整数的负数原码、反码、码和补码完全一样,正数即符号位固定为0,样负源码数值位相同。数的数样二、和正负整数的负数符号位固定为1,由原码变为补码时,码和规则如下:
1、正数原码符号位1不变,整数的每一位二进制数位求反,得到反码。
2、反码符号位1不变,反码数值位最低位加1,得到补码。
方法:
(1)正整数的原码,反码和补码计算,符号位为0,深圳机构运营源码原码反码补码。
(2)负整数的原码,反码和补码计算,先求原码,再求反码,最后求补码。
(3)根据补码求真值,一般使用图中的公式计算,正整数符号为+,负整数符号为-,通常完成补码求真后,可以按步骤1、2简单的逆推一下,看结果是否正确。
补码的表示方法:
模的概念:把一个计量单位称之为模或模数。例如,时钟是以 进制进行计数循环的,即以为模。在时钟上,时针加上(正拨)的整数位或减去(反拨)的整数位,时针的位置不变。点钟在舍去模后,成为(下午)2点钟(=-=2)。
从0点出发逆时针拨格即减去小时,美廉商业源码也可看成从0点出发顺时针拨2格(加上2小时),即2点(0-=-=-+=2)。因此,在模的前提下,-可映射为+2。由此可见,对于一个模数为的循环系统来说,加2和减的效果是一样的。
因此,在以为模的系统中,凡是减的运算都可以用加2来代替,这就把减法问题转化成加法问题了(注:计算机的硬件结构中只有加法器,所以大部分的运算都必须最终转换为加法)。和2对模而言互为 补数。
同理,计算机的运算部件与寄存器都有一定字长的限制(假设字长为8),因此它的运算也是一种模运算。当计数器计满8位也就是个数后会产生溢出,又从头开始计数。产生溢出的量就是计数器的模,显然,8位 二进制数,它的模数为2^8=。在计算中,htmlmgui官网源码两个互补的数称为“补码”。
简述表示一个二进制负数的原码、反码和补码
数分有符号数和无符号数。
有符号数 分定点数 和 浮点数。
有符号数,负数的数码与正数一样,符号位有1,这就是原码。
一般符号位在最高位。
无符号数,如果位,可以理解 原码的符号位 在第位,计算机为了方便,负数用补码表示,这就省了第位。
减法可以用加法器做。
负数原码变反码,反码加1就是补码。
正数不分原码,反码,补码,正数的原码反码补码一样。
0分正0负0,两者是双门神指标源码不一样的。
负数的原码、反码、补码相同吗?
正数的原码、反码、补码相同;
负数的原码取反就是反码(最高位1不能变),反码+1就是补码;
负数的补码取反就是反码(最高位1不能变),反码+1就是原码;
因为最高bit不是1,所以这里Y一定是正整数。
如果X是无符号数:
X和Y的补码就是源码,直接相减的到结果是整数,也是补码,
X-Y=
如果X是有符号数:
X的原码是,即-,Y的原码是,即,X-Y为-,得到的原码,对应的补码是
正数补码和负数补码有什么不同?
正数的补码和负数的补码在计算机系统中有着根本的不同,主要表现在它们的表示方式上:
正数的补码:正数的补码就是其本身的二进制表示。也就是说,对于一个正整数,其补码和它的原码(直接的二进制表示)是相同的。
负数的补码:负数的补码则是将其对应正数的二进制表示取反(即1变0,0变1,这个过程叫做取反码),然后再对反码加1。这种处理方式使得负数在计算机中能够以一种统一的格式进行存储和运算,同时也简化了加法运算,因为在补码系统中,加法和减法可以用同样的硬件电路来处理。
举个例子,如果我们考虑一个8位的系统:
+5 的原码和补码都是 。
-5 的补码则是 +5()取反得到 ,然后加1,得到 。
在计算机科学中,采用补码来表示负数是为了简化和统一硬件运算逻辑,特别是在进行加减运算时。
正数的原码,补码,反码是什么?
[+0]原码= , [-0]原码=[+0]反码= , [-0]反码=
[+0]补码= , [-0]补码=
补码没有正0与负0之分。正数的反码、补码和其源码相同,负数的反码是其源码,除符号位外其他位取反负数的补码是取其反码后加1。
详细释义:
所谓原码就是二进制定点表示法,即最高位为符号位,“0”表示正,“1”表示负,其余位表示数值的大小。
(一)反码表示法规定:
1、正数的反码与其原码相同;
2、负数的反码是对正数逐位取反,符号位保持为1;
(二)对于二进制原码求反码:
(()原)反=对正数()原含符号位取反= 反码 (,1为符号码,故为负)
() 二进制= -2 十进制
(三)对于八进制:
举例 某linux平台设置了默认的目录权限为(rwxr-xr-x),八进制表示为,那么,umask是权限位的反码,计算得到umask为的过程如下:
原码= 反码 (逐位解释:0为符号位,0为7-7,2为7-5,2为7-5)
(四)补码表示法规定:正数的补码与其原码相同;负数的补码是在其反码的末位加1。
扩展资料
转换方法
由于正数的原码、补码、反码表示方法均相同,不需转换。在此,仅以负数情况分析。
(1) 已知原码,求补码。
例:已知某数X的原码为B,试求X的补码和反码。
解:由[X]原=B知,X为负数。求其反码时,符号位不变,数值部分按位求反;求其补码时,再在其反码的末位加1。
1 0 1 1 0 1 0 0 原码
1 1 0 0 1 0 1 1 反码,符号位不变,数值位取反
1 +1
1 1 0 0 1 1 补码
故:[X]补=B,[X]反=B。
(2) 已知补码,求原码。
分析:按照求负数补码的逆过程,数值部分应是最低位减1,然后取反。但是对二进制数来说,先减1后取反和先取反后加1得到的结果是一样的,故仍可采用取反加1 有方法。
例:已知某数X的补码B,试求其原码。
解:由[X]补=B知,X为负数。
采用逆推法
1 1 1 0 1 1 1 0 补码
1 1 1 0 1 1 0 1 反码(末位减1)
1 0 0 1 0 0 1 0 原码(符号位不变,数值位取反)
百度百科 反码
原码反码补码计算
原码、反码、补码的计算方式如下:
1. 原码:对于正数,原码就是其二进制表示;对于负数,原码是其绝对值的二进制表示,符号位为1。
2. 反码:正数的反码与其原码相同;负数的反码是对其原码的每一位取反,即符号位不变,其余位取反。
3. 补码:正数的补码与其原码相同;负数的补码是其反码加1。
在计算机中,为了表示正数和负数,引入了原码、反码和补码的概念。原码是最直接的表示法,对于正数,其原码就是其二进制表示;而对于负数,其原码是数值的绝对值的二进制表示,最前面的符号位为1。这种表示法简单直观,但不便于进行加减运算。
反码是对原码的改进,主要用于简化负数的运算。对于正数,其反码与原码相同;而对于负数,反码的符号位保持不变,其余位则是对原码的每一位进行取反操作。也就是说,负数的反码是其绝对值的二进制形式中每一位取反后得到的。但反码在计算机内部主要用于过渡,不能直接表示数值。
补码是对反码的进一步改进,可以更方便地进行加减运算。正数的补码与原码相同,即直接用其二进制表示;而对于负数,其补码是反码加1。补码在计算机内部广泛使用,因为使用补码可以简化加减运算的规则和硬件设计。例如,两个整数相加可以用它们的补码相加来实现。由于补码的引入,使得计算机内部的运算变得更为高效和简便。