皮皮网

【nginx源码1.10.3源码安装】【安心团app源码】【北极比特币源码】filechannelimpl 源码

时间:2024-11-26 16:44:23 来源:Godot 源码

1.MappedByteBuffer VS FileChannel 孰强孰弱?
2.深入浅出 Java FileChannel 的堆外内存使用
3.java mmap
4.记一次源码追踪分析,从Java到JNI,再到JVM的C++:fileChannel.map()为什么快;源码分析map方法,put方法

filechannelimpl 源码

MappedByteBuffer VS FileChannel 孰强孰弱?

        Java 在 JDK 1.4 引入了 ByteBuffer 等 NIO 相关的类,使得 Java 程序员可以抛弃基于 Stream ,从而使用基于 Block 的方式读写文件,另外,JDK 还引入了 IO 性能优化之王—— 零拷贝 sendFile 和 mmap。但他们的性能究竟怎么样? 和 RandomAccessFile 比起来,快多少? 什么情况下快?到底是 FileChannel 快还是 MappedByteBuffer å¿«......

        (零拷贝参考 Zero Copy I: User-Mode Perspective )

        天啊,问题太多了!!!!!!

        让我们慢慢分析。

        我们知道,Java 世界有很多 MQ:ActiveMQ,kafka,RocketMQ,去哪儿 MQ,而他们则是 Java 世界使用 NIO 零拷贝的大户。

        然而,他们的性能却大相同,抛开其他的因素,例如网络传输方式,数据结构设计,文件存储方式,我们仅仅讨论 Broker 端对文件的读写,看看他们有什么不同。

        下图是楼主查看源码总结的各个 MQ 使用的文件读写方式。

        那么,到底是 MMAP 强,还是 FileChannel 强?

        MMAP 众所周知,基于 OS 的 mmap 的内存映射技术,通过 MMU 映射文件,使随机读写文件和读写内存相似的速度。

        那 FileChannel 呢?是零拷贝吗?很遗憾,不是。FileChannel 快,只是因为他是基于 block 的。

        接下来,benchmark everything —— 徐妈.

        如何 Benchmark? Benchmark 哪些?

        既然是读写文件,自然就要看读写性能,这是最基本的。但,注意,通常 MQ 会使用定时刷盘,防止数据丢失,MMAP 和 FileChannel 都有 force 方法,用于将 pageCache 的数据刷到硬盘上。force 会影响性能吗? 答案是会。影响到什么程度呢? 不知道。每次写入的数据大小会影响性能吗,毫无疑问会,但规则是什么呢?FileOutputStream 真的一无是处吗?答案是不一定。

        一直以来,文件调优都是艺术,因为影响性能的因素太多,首先,SSD 的出现,已经让传统基于 B+ tree 的树形结构产生了自我疑问,第二,每个文件系统的性能不同,Linux ext3 和 ext4 性能天壤之别(删除文件的性能差距在 倍左右)。而 Max OS 的 HFS+ 系统被 Linus 称之为“有史以来最垃圾的文件系统”,幸运的是,苹果终于在 年推送了 macOS High Sierra 和 iOS .3 系统,这个两个系统都抛弃了 HFS+,换成了性能更高的 APFS。而每个文件系统又可以设置不同的调度算法,另外,还有虚拟内存缺页中断带来的性能毛刺.......

        (tips:良心的 RocketMQ 提供了 Linux IO 调优的脚本,这点做的不错 :)

        跑题了。

        楼主写了一个小项目,用于测试 Java MappedByteBuffer & FileChannel & RandomAccessFile & FileXXXputStream 的读写性能。大家也可以在自己的机器上跑跑看。

        CPU:intel i7 4æ ¸8线程 4.2GHz

        内存:GB DDR4

        磁盘:SSD 读写 2GB/s 左右

        JDK1.8

        OS:Mac OS ..6

        虚拟内存: 未关闭,大小 9GB

        测试注意点:

        1GB 文件:

        测试 MappedByteBuffer & FileChannel & RandomAccessFile & FileInputStream.

        从这张图里,我们看到,mmap 性能完胜,特别是在小数据量的情况下。其他的流,只有在4kb 的情况下,才开始反杀 mmap。因此,读 4kb 以下的数据,请使用 mmap。

        再放大看看 mmap 和 FileChannel 的比较:

        根据上图,我们看到,在写入数据包大于 4kb 以上的情况下,FileChannel 等一众非零拷贝,基本完胜 mmap,除了那个一次读 1G 文件的 BT 测试。

        因此,如果你的数据包大于 4kb,请使用 FileChannel。

        1GB 文件:

        测试 MappedByteBuffer & FileChannel & RandomAccessFile & FileInputStream.

        从上图,我们可以看出,mmap 性能还是一样的稳定。FileChannel 也不差,但是在 字节数据量的情况下,还差点意思。

        再看缩略图:

        我们看到,字节 是 FileChannel 和 mmap 性能的分水岭,从 字节开始,FileChannel 一路反杀,直到 BT 1GB 文件稍稍输了一丢丢。

        因此,我们建议:如果你的数据包大小在 字节以上,请使用 FileChannel 写入。

        我们知道,RocketMQ 使用异步刷盘,那么异步 force 对性能有没有影响呢?benchmark everything。我们使用异步线程,每 kb 刷盘一次,看看性能如何。

        mmap 一直落后,且性能很差,除了在 字节那里有一点点抖动,基本维持 在 左右,而没有 force 的情况下,则在 左右。而 FileChannel 则完全不受 force 的影响。在我的测试中,1GB 的文件,一次 force 需要 毫秒左右。buffer 越大,时间越多,反之则越小。

        说个题外话,Kafka 一直不建议使用 force,大概也有这个原因。当然,Kafka 还有自己的多副本策略保证数据安全。

        这里,我们得出结论,如果你需要经常执行 force,即使是异步的,也请一定不要使用 mmap,请使用 FileChannel。

        基于以上测试,我们得出一张图表:

        假设,我们的系统的数据包在 - 左右,我们应该使用什么策略?

        答:读使用 mmap,仅仅写使用 FileChannel。

        再回过头看看 MQ 的实现者们,似乎只有 QMQ 是 这么做的。当然,RocketMQ 也提供了 FileChannel 的写选项。但默认 mmap 写加异步刷盘,应该是 broker busy 的元凶吧。

        而 Kafka,因为默认不 force,也是使用 FileChannel 进行写入的,为什么使用 FileChannel 读呢?大概是因为消息的大小在 4kb 以上吧。

        这样一揣测,这些 MQ 的设计似乎都非常合理。

        最后,能不用 force 就别用 force。如果要用 force ,就请使用 FileChannel。

深入浅出 Java FileChannel 的堆外内存使用

       从一个线上系统 OOM 讲起,我们通过解决用户反馈的 IoTDB 查询卡住问题,深入探讨了 Java FileChannel 中的nginx源码1.10.3源码安装堆外内存使用。

       首先,让我们了解一下背景知识。FileChannel 是 Java NIO 提供的文件通道类,它允许对文件进行读写操作。而堆外内存是指直接分配在系统内存中的内存区域,不受 Java 堆管理。

       FileChannel 使用堆外内存的原因是提高性能。当使用 DirectByteBuffer 时,安心团app源码数据本来就在堆外内存中,因此在进行 I/O 操作时没有拷贝的过程,这被称为“零拷贝”。然而,操作系统需要将堆上的数据拷贝到堆外内存中进行 I/O 操作,因为操作系统通过内存地址进行数据交互。

       当 JVM 进行垃圾回收(GC)时,可能会导致内存地址的变化,影响正在执行的 I/O 操作。因此,将数据从堆复制到堆外内存,可以保证数据地址在 I/O 过程中保持不变。

       在 JDK 的北极比特币源码源码分析中,我们发现 DirectByteBuffer 的分配和回收机制。DirectByteBuffer 在分配时创建的 Cleaner 对象用于堆外内存的回收,当 DirectByteBuffer 仅被 Cleaner 引用时,其可以在任意 GC 时段被回收。这样,虽然堆外内存并非完全不受 GC 控制,但通过 Cleaner 实现了有效的回收机制。

       FileChannel 在读写过程中,使用 DirectByteBuffer 进行数据操作。在分配和回收临时 DirectByteBuffer 时,考虑到系统的资源限制,适当调整 TEMP_BUF_POOL_SIZE 的值可以避免 OOM 的问题。

       回到开头提到的Unity源码运行电脑线上问题,用户在使用 IoTDB 时遭遇 OOM。通过源码分析,我们发现没有适当配置 MAX_CACHED_BUFFER_SIZE,导致额外分配的堆外内存缓存过大,最终引发 OOM。通过调整配置,解决了这个问题。

       Java FileChannel 的堆外内存使用,提高了 I/O 操作的性能,但也需要合理配置和管理,避免资源浪费和内存泄露,确保系统的稳定运行。

java mmap

       java mmap是什么,让我们一起了解一下?

        mmap是将一个文件或者其它对象映射进内存,文件被映射到多个页上,如果文件的大小不是所有页的大小之和,最后一个页不被使用的空间将会清零。mmap在用户空间映射调用系统中作用很大。

        目前Java提供的mmap只有内存文件映射,其他IO操作还没有内存映射功能。

        Java内存映射文件(Memory Mapped Files)就已经在java.nio包中,但它对很多程序开发者来说仍然是一个相当新的概念。引入NIO后,Java IO已经相当快,而且内存映射文件提供了Java有可能达到的最快IO操作,这也是为什么那些高性能Java应用应该使用内存映射文件来持久化数据。

       mmap在Java中的用途是什么?

        1、对普通文件使用mmap提供内存映射I/O,以避免系统调用(read、write、lseek)带来的性能开销。同时减少了数据在内核缓冲区和进程地址空间的拷贝次数。

       2、使用特殊文件提供匿名内存映射。

        3、使用shm_open以提供无亲缘关系进程间的Posix共享内存区。

        mmap在Java中是如何使用的?(具体参考kafka源码中的OffsetIndex这个类)

       æ“ä½œæ–‡ä»¶ï¼Œå°±ç›¸å½“于操作一个ByteBuffer一样。 public class TestMmap { undefined public static String path = "C:\\Users\\\\Desktop\\mmap"; public static void main(String[] args) throws IOException { undefined File file1 = new File(path,源码怎么植入程序 "1"); RandomAccessFile randomAccessFile = new RandomAccessFile(file1, "rw"); int len = ; // æ˜ å°„为2kb,那么生成的文件也是2kb MappedByteBuffer mmap = randomAccessFile.getChannel().map(FileChannel.MapMode.READ_WRITE, 0, len); System.out.println(mmap.isReadOnly()); System.out.println(mmap.position()); System.out.println(mmap.limit()); // å†™æ•°æ®ä¹‹åŽï¼ŒJVM é€€å‡ºä¹‹åŽä¼šå¼ºåˆ¶åˆ·æ–°çš„ mmap.put("a".getBytes()); mmap.put("b".getBytes()); mmap.put("c".getBytes()); mmap.put("d".getBytes()); // System.out.println(mmap.position()); // System.out.println(mmap.limit()); // // mmap.force(); // å‚考OffsetIndex强制回收已经分配的mmap,不必等到下次GC, unmap(mmap); // åœ¨Windows上需要执行unmap(mmap); å¦åˆ™æŠ¥é”™ // Windows won't let us modify the file length while the file is mmapped // java.io.IOException: è¯·æ±‚的操作无法在使用用户映射区域打开的文件上执行 randomAccessFile.setLength(len/2); mmap = randomAccessFile.getChannel().map(FileChannel.MapMode.READ_WRITE, 0, len/2); // A mapping, once established, is not dependent upon the file channel // that was used to create it. Closing the channel, in particular, has no // effect upon the validity of the mapping. randomAccessFile.close(); mmap.put(, "z".getBytes()[0]); } // copy from FileChannelImpl#unmap(私有方法) private static void unmap(MappedByteBuffer bb) { undefined Cleaner cl = ((DirectBuffer)bb).cleaner(); if (cl != null) cl.clean(); } }

记一次源码追踪分析,从Java到JNI,再到JVM的C++:fileChannel.map()为什么快;源码分析map方法,put方法

       前言

       在系统IO相关的系统调用有read/write,mmap,sendfile等这些。

       其中read/write是普通的读写,每次都需要将buffer从用户空间拷贝到内核空间;

       而mmap使用的是内存映射,会将磁盘文件对应的页映射(拷贝)到内核空间的page cache,并记录到用户进程的页表中,使得用户空间也可以像操作用户空间一样操作该文件的映射,最后再由操作系统来讲该映射(脏页)回写到磁盘;

       sendfile则使用的是零拷贝技术,在mmap的基础上,当发送数据的时候只拷贝fd和offset等元数据信息,而将数据主体直接拷贝至protocol buffer,实现了内核数据零冗余的零拷贝技术

       本文地址:/post//

问题/目的问题1Java中哪些API使用到了mmap问题2怎么知道该API使用到了mmap,如何追踪程序的系统调用目的1源码中分析验证,从Java到JNI,再到C++:fileChannel.map()使用的是系统调用mmap目的2源码验证分析:调用mmapedByteBuffer.put(Byte[])时JVM在搞些什么?mmap比普通的read/write快在哪?揭晓答案1mmap在Java NIO中的体现/使用

       看一个例子

// 1GBpublic static final int _GB = 1**;File file = new File("filename");FileChannel fileChannel = new RandomAccessFile(file, "rw").getChannel();MappedByteBuffer mmapedByteBuffer = fileChannel.map(FileChannel.MapMode.READ_WRITE, 0, _GB);for (int i = 0; i < _GB; i++) { count++;mmapedByteBuffer.put((byte)0);}

       其中fileChannel.map()底层使用的就是系统调用mmap,函数签名为: public abstract MappedByteBuffer map(MapMode mode,long position, long size)throws IOException

答案2程序执行的系统调用追踪/** * @author Tptogiar * @description * @date /5/ - : */public class TestMappedByteBuffer{ public static final int _4kb = 4*;public static final int _GB= 1**;public static void main(String[] args) throws IOException, InterruptedException { // 为了方便在日志中找到本段代码的开始位置和结束位置,这里利用文件io来打开始标记FileInputStream startInput = null;try { startInput = new FileInputStream("start1.txt");startInput.read();} catch (IOException e) { e.printStackTrace();}File file = new File("filename");FileChannel fileChannel = new RandomAccessFile(file, "rw").getChannel();MappedByteBuffer map = fileChannel.map(FileChannel.MapMode.READ_WRITE, 0, _GB); //我们想分析的语句问题2for (int i = 0; i < _GB; i++) { map.put((byte)0); // 下文中需要分析的语句目的2}// 打结束标记FileInputStream endInput = null;try { endInput = new FileInputStream("end.txt");endInput.read();} catch (IOException e) { e.printStackTrace();}}}

       把上面这段代码编译后把“.class”文件拉到linux执行,并用linux上的strace工具记录其系统调用日志,拿到日志文件我们可以在日志中看到以下信息(关于怎么拿到日志可以参照我的博文:无(代写)):

       注:日志有多行,这里只选取我们关注的

// ...// 看到了我们打的开始标志openat(AT_FDCWD, "start1.txt", O_RDONLY) = -1 ENOENT (No such file or directory)// ... // 打开文件,文件描述符fd为6openat(AT_FDCWD, "filename", O_RDWR|O_CREAT, ) = 6// 判断文件状态fstat(6, { st_mode=S_IFREG|, st_size=, ...}) = 0// ... // 判断文件状态fstat(6, { st_mode=S_IFREG|, st_size=, ...}) = 0// 进行内存映射mmap(NULL, , PROT_READ|PROT_WRITE, MAP_SHARED, 6, 0) = 0x7f2fd6cd// ...// 程序退出exit(0)// 看到了我们打的结束标志openat(AT_FDCWD, "end.txt", O_RDONLY) = -1 ENOENT (No such file or directory)

       在上面程序的系统调用日志中我们确实看到了我们打的开始标志,结束标志。在开始标志和结束标志之间我们看到了我们的文件"filename"确实被打开了,文件描述符fd = 6;在打开文件后紧接着又执行了系统调用mmap,这一点我们Java代码一致,这样,我们就验证了我们答案1中的结论,可以开始我们的下文了

源码追踪分析,从Java到JNI,再到JVM的C++目的1寻源之旅:fileChannel.map()

       我们知道我们执行Java代码fileChannel.map()确实会在底层调用系统调用,那怎么在源码中得到验证呢?怎么落脚于源码进行分析呢?下面开始我们的寻源之旅

       FileChannelImpl.map() 注:由于代码较长,这里代码中略去了一些我们不关注的,比如异常捕获等

public MappedByteBuffer map(MapMode mode, long position, long size)throws IOException{ // ...try { // ...synchronized (positionLock) { // ...long mapPosition = position - pagePosition;mapSize = size + pagePosition;try { // !我们要找的语句就在这!addr = map0(imode, mapPosition, mapSize);} catch (OutOfMemoryError x) { // 如果内存不足,先尝试进行GCSystem.gc();try { Thread.sleep();} catch (InterruptedException y) { Thread.currentThread().interrupt();}try { // 再次试着mmapaddr = map0(imode, mapPosition, mapSize);} catch (OutOfMemoryError y) { // After a second OOME, failthrow new IOException("Map failed", y);}}} // ...} finally { // ...}}

       上面函数源码中真正执行mmap的语句是在addr = map0(imode, mapPosition, mapSize),于是我们寻着这里继续追踪

       FileChannelImpl.map0()

// Creates a new mappingprivate native long map0(int prot, long position, long length)throws IOException;

       可以看到,该方法是一个native方法,所以后面的源码我们需要到这个FileChannelImpl.class对应的fileChannelImpl.c中去看,所以我们需要去找到JDK的源码

       在JDK源码中我们找到fileChannelImpl.c文件

       fileChannelImpl.c 根据JNI的对应规则,我们找到该文件内对应的Java_sun_nio_ch_FileChannelImpl_map0方法,其源码如下:

JNIEXPORT jlong JNICALLJava_sun_nio_ch_FileChannelImpl_map0(JNIEnv *env, jobject this, jint prot, jlong off, jlong len){ void *mapAddress = 0;jobject fdo = (*env)->GetObjectField(env, this, chan_fd);jint fd = fdval(env, fdo);int protections = 0;int flags = 0;if (prot == sun_nio_ch_FileChannelImpl_MAP_RO) { protections = PROT_READ;flags = MAP_SHARED;} else if (prot == sun_nio_ch_FileChannelImpl_MAP_RW) { protections = PROT_WRITE | PROT_READ;flags = MAP_SHARED;} else if (prot == sun_nio_ch_FileChannelImpl_MAP_PV) { protections =PROT_WRITE | PROT_READ;flags = MAP_PRIVATE;}// !我们要找的语句就在这里!mapAddress = mmap(0,/* Let OS decide location */len,/* Number of bytes to map */protections,/* File permissions */flags,/* Changes are shared */fd, /* File descriptor of mapped file */off); /* Offset into file */if (mapAddress == MAP_FAILED) { if (errno == ENOMEM) { JNU_ThrowOutOfMemoryError(env, "Map failed");return IOS_THROWN;}return handle(env, -1, "Map failed");}return ((jlong) (unsigned long) mapAddress);}

       我们要找的语句就上面代码中的mapAddress = mmap(0,len,protections,flags,fd,off),至于为什么不是直接的mmap,而是mmap,是因为这里的mmap是一个宏,在文件上方有其定义,如下:

#define mmap mmap

       至此,我们就在源码中得到验证了我们问题2中的结论:fileChannelImpl.map()底层使用的是mmap系统调用

目的2寻源之旅:mmapedByteBuffer.put(Byte[ ])

       接着我们来看看当我们调用mmapedByteBuffer.put(Byte[])JVM底层在搞些什么动作

       MappedByteBuffer ?首先我们得知道,当我们执行MappedByteBuffer map = fileChannel.map(FileChannel.MapMode.READ_WRITE, 0, _GB)时,实际返回的对象是DirectByteBuffer类的实例,因为MappedByteBuffer为抽象类,且只有DirectByteBuffer继承了它,看下面两图就明白了

       DirectByteBuffer 于是我们找到DirectByteBuffer内的put(Byte[ ])方法

public ByteBuffer put(byte x) { unsafe.putByte(ix(nextPutIndex()), ((x)));return this;}

       可以看到该方法内实际是调用Unsafe类内的putByte方法来实现功能的,所以我们还得去看Unsafe类

       Unsafe.class

public native voidputByte(long address, byte x);

       该方法在Unsafe内是一个native方法,所以所以我们还得去看unsafe.cpp文件内对应的实现

       unsafe.cpp

       在JDK源码中,我们找到unsafe.cpp

       在这份源码内,没有使用JNI内普通加前缀的方法来形成对应关系

       不过我们还是能顺着源码的蛛丝轨迹找到我们要找的方法

       注意到源码中有这样的注册机制,所以我们可以知道我们要找的代码就是上图中标注的代码

       顺藤摸瓜,我们就找到了该方法的定义

UNSAFE_ENTRY(void, Unsafe_SetNative##Type(JNIEnv *env, jobject unsafe, jlong addr, java_type x)) \UnsafeWrapper("Unsafe_SetNative"#Type); \JavaThread* t = JavaThread::current(); \t->set_doing_unsafe_access(true); \void* p = addr_from_java(addr); \*(volatile native_type*)p = x; \t->set_doing_unsafe_access(false); \UNSAFE_END \

       该方法内主要的逻辑语句就是以下两句:

/** * @author Tptogiar * @description * @date /5/ - : */public class TestMappedByteBuffer{ public static final int _4kb = 4*;public static final int _GB= 1**;public static void main(String[] args) throws IOException, InterruptedException { // 为了方便在日志中找到本段代码的开始位置和结束位置,这里利用文件io来打开始标记FileInputStream startInput = null;try { startInput = new FileInputStream("start1.txt");startInput.read();} catch (IOException e) { e.printStackTrace();}File file = new File("filename");FileChannel fileChannel = new RandomAccessFile(file, "rw").getChannel();MappedByteBuffer map = fileChannel.map(FileChannel.MapMode.READ_WRITE, 0, _GB); //我们想分析的语句问题2for (int i = 0; i < _GB; i++) { map.put((byte)0); // 下文中需要分析的语句目的2}// 打结束标记FileInputStream endInput = null;try { endInput = new FileInputStream("end.txt");endInput.read();} catch (IOException e) { e.printStackTrace();}}}0

       至此,我们就知道:其实我们调用mmapedByteBuffer.put(Byte[ ])时,JVM底层并不需要涉及到系统调用(这里也可以用strace工具追踪从而得到验证)。也就是说通过mmap映射的空间在内核空间和用户空间是共享的,我们在用户空间只需要像平时使用用户空间那样就行了————获取地址,设置值,而不涉及用户态,内核态的切换

总结

       fileChannelImpl.map()底层用调用系统函数mmap

       fileChannelImpl.map()返回的其实不是MappedByteBuffer类对象,而是DirectByteBuffer类对象

       在linux上可以通过strace来追踪系统调用

       JNI中“.class”文件内方法与“.cpp”文件内函数的对应关系不止是前缀对应的方法,还可以是注册的方式,这一点的追寻代码的时候有很大帮助

       directByteBuffer.put()方法底层并没有涉及系统调用,也就不需要涉及切态的性能开销(其底层知识执行获取地址,设置值的操作),所以mmap的性能就比普通读写read/write好

       ...

原文:/post/

推荐资讯
qq留言源码_qq留言代码大全

qq留言源码_qq留言代码大全

上海静安:数字赋能为消费维权提质扩面

上海静安:数字赋能为消费维权提质扩面

高雄塗鴉怪客出沒! 新崛江店家逮人交警方

高雄塗鴉怪客出沒! 新崛江店家逮人交警方

最醜狗狗! 獅子狗「狂野譚」挑戰第6次終奪冠

最醜狗狗! 獅子狗「狂野譚」挑戰第6次終奪冠

echarts 源码 优化

echarts 源码 优化

農曆春節將成為紐約市法定假日

農曆春節將成為紐約市法定假日

copyright © 2016 powered by 皮皮网   sitemap