1.Linux内核源码解析---EPOLL实现4之唤醒等待进程与惊群问题
2.底层原理epoll源码分析,系统还搞不懂epoll的源码看过来
3.求一个EP分销系统源码,easypanel(idc分销系统
4.ONNX-Runtime一本通:综述&使用&源码分析(持续更新)
Linux内核源码解析---EPOLL实现4之唤醒等待进程与惊群问题
在Linux内核源码的系统EPOLL实现中,第四部分着重探讨了数据到来时如何唤醒等待进程以及惊群问题。源码当网卡接收到数据,系统DMA技术将数据复制到内存RingBuffer,源码信息发布网站系统源码通过硬中断通知CPU,系统然后由ksoftirqd线程处理,源码最终数据会进入socket接收队列。系统虽然ksoftirqd的源码创建过程不在本节讨论,但核心是系统理解数据如何从协议层传递到socket buffer。
在tcp_ipv4.c中,源码当接收到socket buffer时,系统会首先在连接表和监听表中寻找对应的源码socket。一旦找到,系统源码时代软件测试进入tcp_rcv_established函数,这里会检查socket是否准备好接收数据,通过调用sock_data_ready,其初始值为sock_def_readable,进而进入wake_up函数,唤醒之前挂上的wait_queue_t节点。
在wake_up方法中,会遍历链表并回调ep_poll_callback,这个函数是epoll的核心逻辑。然而,如果epoll的设置没有启用WQ_FLAG_EXCLUSIVE,就会导致惊群效应,即唤醒所有阻塞在当前epoll的进程。这在default_wake_function函数中体现,博易开奖源码如果没有特殊标记,进程会立即被唤醒并进入调度。
总结来说,epoll的唤醒过程涉及socket buffer、协议层处理、链表操作以及回调函数,其中惊群问题与默认的唤醒策略密切相关。理解这些细节,有助于深入理解Linux内核中EPOLL的异步操作机制。
底层原理epoll源码分析,还搞不懂epoll的看过来
Linux内核提供关键epoll操作通过四个核心函数:epoll_create()、epoll_ctl()、epoll_wait()和epoll_event_callback()。操作系统内部使用epoll_event_callback()来调度epoll对象中的婚恋 小程序 源码事件,此函数对理解epoll如何支持高并发连接至关重要。简化版TCP/IP协议栈在GitHub上实现epoll逻辑,存放关键函数的文件是[src ty_epoll_rb.c]。
epoll的实现包含两个核心数据结构:epitem和eventpoll。epitem由rbn和rdlink组成,前者为红黑树节点,后者为双链表节点,实现事件对象的红黑树与双链表两重管理。eventpoll包含rbr和rdlist,分别指向红黑树根和双链表头,管理所有epitem对象。
深入分析四个关键函数:
epoll_create():创建epoll对象,逻辑概括为六步。
epoll_ctl():根据用户传入参数构建epitem对象,跑跑卡丁车无缝源码依据操作类型(ADD、MOD、DEL)决定epitem在红黑树中的插入、更新或删除。
epoll_wait():检查双链表中是否有节点,若有填充用户指定内存,无则循环等待事件触发,调用epoll_event_callback()插入新节点。
epoll_event_callback():内核中被调用,用于处理服务器触发的五种特定情况,并将红黑树节点插入双链表。
总结epoll底层实现,关键在于两个数据结构,分别管理事件与对象关系。epoll通过红黑树与双链表高效组织事件,确保高并发场景下的高效处理。
求一个EP分销系统源码,easypanel(idc分销系统
在寻找EP分销系统源码时,您可能会遇到一些免费资源。然而,务必小心,因为免费的东西可能暗藏风险。例如,免费源码可能被植入木马,这会导致您的会员信息被篡改,会员余额被修改,甚至财务账户受到直接攻击。
ONNX-Runtime一本通:综述&使用&源码分析(持续更新)
ONNX-Runtime详解:架构概览、实践与源码解析
ONNX-Runtime作为异构模型运行框架,其核心机制是先对原始ONNX模型进行硬件无关的图优化,之后根据支持的硬件选择相应的算子库,将模型分解为子模型并发在各个平台执行。它提供同步模式的计算支持,暂不包括异步模式。ORT(onnx-runtime缩写)是主要组件,包含了图优化(graph transformer)、执行提供者(EP)等关键模块。
EP是执行提供者,它封装了硬件特有的内存管理和算子库,可能只支持部分ONNX算子,但ORT的CPU默认支持所有。ORT统一定义了tensor,但EP可有自定义,需提供转换接口。每个推理会话的run接口支持多线程,要求kernel的compute函数是并发友好的。
ORT具有后向兼容性,能运行旧版本ONNX模型,并支持跨平台运行,包括Windows、Linux、macOS、iOS和Android。安装和性能优化是实际应用中的重要步骤。
源码分析深入到ORT的核心模块,如框架(内存管理、tensor定义等)、图结构(构建、排序与修改)、优化器(包括RewriteRule和GraphTransformer),以及平台相关的功能如线程管理、文件操作等。Session是推理流程的管理核心,构造函数初始化模型和线程池,load负责模型反序列化,initialize则进行图优化和准备工作。
ORT中的执行提供者(EP)包括自定义实现和第三方库支持,如TensorRT、CoreML和SNPE。其中,ORT与CoreML和TensorRT的集成通过在线编译,将ONNX模型传递给这些框架进行计算。ORT通过统一的接口管理元框架之上的算子库,但是否支持异构运算(如SNPE与CPU库的混合)仍有待探讨。
总结来说,ONNX-Runtime处理多种模型格式,包括原始ONNX和优化过的ORT模型,以适应多平台和多设备需求。它通过复杂的架构和优化技术,构建了可扩展且高效的推理软件栈,展示了flatbuffer在性能和体积方面的优势。
附录:深入探讨ORT源码编译过程的细节。