1.Linux读写锁逻辑解析
2.Go并åç¼ç¨ï¼goroutineï¼channelåsync详解
3.spinlock(linux kernel 自旋锁)
Linux读写锁逻辑解析
Linux的读写锁机制,如同一把精密的多线程调和器,巧妙解决并发世界中的读多写少困境。其核心数据结构,如rwsem(读写信号量),包含读写状态counter和任务管理信息,建仓指标源码确保了读线程的并发性和写线程的互斥性。
在内核设计中,当写线程尝试获取写锁时,可能会采取乐观自旋策略,若失败则会优雅地加入等待队列。rw_semaphore结构体中的关键成员,如task指针和队列,收购实盘源码负责管理这些等待任务。对外API如down_read_trylock,为高效读取提供了可能,即使尝试失败也不会造成阻塞。
读锁获取过程复杂而微妙,通过RWSEM_READER_BIAS快速路径和防止饿死的慢速路径,遵循公平原则。乐观偷锁机制允许临界区无写者时,高优先级读者尝试先入。若偷窃失败,读者会进入等待队列,队列超时机制确保效率与公平的云招商php源码平衡。
当读线程加入等待队列,任务会被细致地处理,通过rwsem_add_waiter调整counter。特别是对于首位等待者,会设置RWSEM_FLAG_WAITERS标志。在尝试获取锁前,可能需要唤醒潜在的等待者,如owner离开或读锁持有者。释放读锁时,仅简单地减去counter,不移除owner,以减少复杂性。源码文件的前缀
写锁的获取则更为严谨,rwsem_write_trylock会检查rwsem状态,成功则立即持有并标记,否则返回。写锁的获取过程涉及等待队列的操作和唤醒策略,保证了高优先级的请求能及时响应。
在写锁持有者释放时,与读锁类似,仅清理owner,同时考虑writer可能对reader的抢锁影响。乐观自旋条件的判断,确保了在特定场景下的网页源码采集软件高效执行,如writer持有锁且未禁止自旋。
OPPO内核团队在实际应用中,如手机交互场景,对Linux读写锁进行了优化,以降低延迟和提高吞吐量。深入研究5..内核源代码中的"Documentation\locking\"部分,你会发现更多优化细节。对于对技术感兴趣的读者,"内核工匠"公众号提供了丰富的技术内容。
Linux的读写锁设计,如同一个精密的调和大师,它在并发世界中奏出了平衡、效率与公平的交响乐,无论在理论层面还是实际应用中,都展现出强大的适应性和灵活性,是多线程并发编程的有力工具。
Go并åç¼ç¨ï¼goroutineï¼channelåsync详解
ä¼é ç并åç¼ç¨èå¼ï¼å®åç并åæ¯æï¼åºè²ç并åæ§è½æ¯Goè¯è¨åºå«äºå ¶ä»è¯è¨çä¸å¤§ç¹è²ãå¨å½ä»è¿ä¸ªå¤æ ¸æ¶ä»£ï¼å¹¶åç¼ç¨çæä¹ä¸è¨èå»ã使ç¨Goå¼å并åç¨åºï¼æä½èµ·æ¥é常ç®åï¼è¯è¨çº§å«æä¾å ³é®ågoç¨äºå¯å¨åç¨ï¼å¹¶ä¸å¨åä¸å°æºå¨ä¸å¯ä»¥å¯å¨æåä¸ä¸ä¸ªåç¨ã
ä¸é¢å°±æ¥è¯¦ç»ä»ç»ã
goroutineGoè¯è¨ç并åæ§è¡ä½ç§°ä¸ºgoroutineï¼ä½¿ç¨å ³é®è¯goæ¥å¯å¨ä¸ä¸ªgoroutineã
goå ³é®è¯åé¢å¿ é¡»è·ä¸ä¸ªå½æ°ï¼å¯ä»¥æ¯æåå½æ°ï¼ä¹å¯ä»¥æ¯æ åå½æ°ï¼å½æ°çè¿åå¼ä¼è¢«å¿½ç¥ã
goçæ§è¡æ¯éé»å¡çã
å æ¥çä¸ä¸ªä¾åï¼
packagemainimport("fmt""time")funcmain(){ gospinner(*time.Millisecond)constn=fibN:=fib(n)fmt.Printf("\rFibonacci(%d)=%d\n",n,fibN)//Fibonacci()=}funcspinner(delaytime.Duration){ for{ for_,r:=range`-\|/`{ fmt.Printf("\r%c",r)time.Sleep(delay)}}}funcfib(xint)int{ ifx<2{ returnx}returnfib(x-1)+fib(x-2)}ä»æ§è¡ç»ææ¥çï¼æå计ç®åºäºææ³¢é£å¥æ°åçå¼ï¼è¯´æç¨åºå¨spinnerå¤å¹¶æ²¡æé»å¡ï¼èä¸spinnerå½æ°è¿ä¸ç´å¨å±å¹ä¸æå°æ示å符ï¼è¯´æç¨åºæ£å¨æ§è¡ã
å½è®¡ç®å®ææ³¢é£å¥æ°åçå¼ï¼mainå½æ°æå°ç»æ并éåºï¼spinnerä¹è·çéåºã
åæ¥çä¸ä¸ªä¾åï¼å¾ªç¯æ§è¡æ¬¡ï¼æå°ä¸¤ä¸ªæ°çåï¼
packagemainimport"fmt"funcAdd(x,yint){ z:=x+yfmt.Println(z)}funcmain(){ fori:=0;i<;i++{ goAdd(i,i)}}æé®é¢äºï¼å±å¹ä¸ä»ä¹é½æ²¡æï¼ä¸ºä»ä¹å¢ï¼
è¿å°±è¦çGoç¨åºçæ§è¡æºå¶äºãå½ä¸ä¸ªç¨åºå¯å¨æ¶ï¼åªæä¸ä¸ªgoroutineæ¥è°ç¨mainå½æ°ï¼ç§°ä¸ºä¸»goroutineãæ°çgoroutineéè¿goå ³é®è¯å建ï¼ç¶å并åæ§è¡ãå½mainå½æ°è¿åæ¶ï¼ä¸ä¼çå¾ å ¶ä»goroutineæ§è¡å®ï¼èæ¯ç´æ¥æ´åç»ææægoroutineã
é£æ没æåæ³è§£å³å¢ï¼å½ç¶æ¯æçï¼è¯·å¾ä¸çã
channelä¸è¬åå¤è¿ç¨ç¨åºæ¶ï¼é½ä¼éå°ä¸ä¸ªé®é¢ï¼è¿ç¨é´éä¿¡ã常è§çéä¿¡æ¹å¼æä¿¡å·ï¼å ±äº«å åçãgoroutineä¹é´çéä¿¡æºå¶æ¯ééchannelã
使ç¨makeå建ééï¼
ch:=make(chanint)//chçç±»åæ¯chanintééæ¯æä¸ä¸ªä¸»è¦æä½ï¼sendï¼receiveåcloseã
ch<-x//åéx=<-ch//æ¥æ¶<-ch//æ¥æ¶ï¼ä¸¢å¼ç»æclose(ch)//å ³éæ ç¼å²channelmakeå½æ°æ¥å两个åæ°ï¼ç¬¬äºä¸ªåæ°æ¯å¯éåæ°ï¼è¡¨ç¤ºéé容éãä¸ä¼ æè ä¼ 0表示å建äºä¸ä¸ªæ ç¼å²ééã
æ ç¼å²ééä¸çåéæä½å°ä¼é»å¡ï¼ç´å°å¦ä¸ä¸ªgoroutineå¨å¯¹åºçééä¸æ§è¡æ¥æ¶æä½ãç¸åï¼å¦ææ¥æ¶å æ§è¡ï¼é£ä¹æ¥æ¶goroutineå°ä¼é»å¡ï¼ç´å°å¦ä¸ä¸ªgoroutineå¨å¯¹åºééä¸æ§è¡åéã
æ以ï¼æ ç¼å²ééæ¯ä¸ç§åæ¥ééã
ä¸é¢æ们使ç¨æ ç¼å²ééæä¸é¢ä¾åä¸åºç°çé®é¢è§£å³ä¸ä¸ã
packagemainimport"fmt"funcAdd(x,yint,chchanint){ z:=x+ych<-z}funcmain(){ ch:=make(chanint)fori:=0;i<;i++{ goAdd(i,i,ch)}fori:=0;i<;i++{ fmt.Println(<-ch)}}å¯ä»¥æ£å¸¸è¾åºç»æã
主goroutineä¼é»å¡ï¼ç´å°è¯»åå°ééä¸çå¼ï¼ç¨åºç»§ç»æ§è¡ï¼æåéåºã
ç¼å²channelå建ä¸ä¸ªå®¹éæ¯5çç¼å²ééï¼
ch:=make(chanint,5)ç¼å²ééçåéæä½å¨ééå°¾é¨æå ¥ä¸ä¸ªå ç´ ï¼æ¥æ¶æä½ä»ééç头é¨ç§»é¤ä¸ä¸ªå ç´ ãå¦æéé满äºï¼åéä¼é»å¡ï¼ç´å°å¦ä¸ä¸ªgoroutineæ§è¡æ¥æ¶ãç¸åï¼å¦æééæ¯ç©ºçï¼æ¥æ¶ä¼é»å¡ï¼ç´å°å¦ä¸ä¸ªgoroutineæ§è¡åéã
æ没ææè§ï¼å ¶å®ç¼å²ééåéåä¸æ ·ï¼ææä½é½è§£è¦äºã
ååchannelç±»åchan<-intæ¯ä¸ä¸ªåªè½åéçééï¼ç±»å<-chanintæ¯ä¸ä¸ªåªè½æ¥æ¶çééã
ä»»ä½ååééé½å¯ä»¥ç¨ä½ååééï¼ä½åè¿æ¥ä¸è¡ã
è¿æä¸ç¹éè¦æ³¨æï¼closeåªè½ç¨å¨åéééä¸ï¼å¦æç¨å¨æ¥æ¶ééä¼æ¥éã
çä¸ä¸ªååééçä¾åï¼
packagemainimport"fmt"funccounter(outchan<-int){ forx:=0;x<;x++{ out<-x}close(out)}funcsquarer(outchan<-int,in<-chanint){ forv:=rangein{ out<-v*v}close(out)}funcprinter(in<-chanint){ forv:=rangein{ fmt.Println(v)}}funcmain(){ n:=make(chanint)s:=make(chanint)gocounter(n)gosquarer(s,n)printer(s)}syncsyncå æä¾äºä¸¤ç§éç±»åï¼sync.Mutexåsync.RWMutexï¼åè æ¯äºæ¥éï¼åè æ¯è¯»åéã
å½ä¸ä¸ªgoroutineè·åäºMutexåï¼å ¶ä»goroutineä¸ç®¡è¯»åï¼åªè½çå¾ ï¼ç´å°é被éæ¾ã
packagemainimport("fmt""sync""time")funcmain(){ varmutexsync.Mutexwg:=sync.WaitGroup{ }//主goroutineå è·åéfmt.Println("Locking(G0)")mutex.Lock()fmt.Println("locked(G0)")wg.Add(3)fori:=1;i<4;i++{ gofunc(iint){ //ç±äºä¸»goroutineå è·åéï¼ç¨åºå¼å§5ç§ä¼é»å¡å¨è¿éfmt.Printf("Locking(G%d)\n",i)mutex.Lock()fmt.Printf("locked(G%d)\n",i)time.Sleep(time.Second*2)mutex.Unlock()fmt.Printf("unlocked(G%d)\n",i)wg.Done()}(i)}//主goroutine5ç§åéæ¾étime.Sleep(time.Second*5)fmt.Println("readyunlock(G0)")mutex.Unlock()fmt.Println("unlocked(G0)")wg.Wait()}RWMutexå±äºç»å ¸çååå¤è¯»æ¨¡åï¼å½è¯»é被å ç¨æ¶ï¼ä¼é»æ¢åï¼ä½ä¸é»æ¢è¯»ãèåéä¼é»æ¢åå读ã
packagemainimport("fmt""sync""time")funcmain(){ varrwMutexsync.RWMutexwg:=sync.WaitGroup{ }Data:=0wg.Add()fori:=0;i<;i++{ gofunc(tint){ //第ä¸æ¬¡è¿è¡åï¼å解éã//循ç¯å°ç¬¬äºæ¬¡æ¶ï¼è¯»éå®åï¼goroutine没æé»å¡ï¼åæ¶è¯»æåãfmt.Println("Locking")rwMutex.RLock()deferrwMutex.RUnlock()fmt.Printf("Readdata:%v\n",Data)wg.Done()time.Sleep(2*time.Second)}(i)gofunc(tint){ //åéå®ä¸æ¯éè¦è§£éåæè½åçrwMutex.Lock()deferrwMutex.Unlock()Data+=tfmt.Printf("WriteData:%v%d\n",Data,t)wg.Done()time.Sleep(2*time.Second)}(i)}wg.Wait()}æ»ç»å¹¶åç¼ç¨ç®æ¯Goçç¹è²ï¼ä¹æ¯æ ¸å¿åè½ä¹ä¸äºï¼æ¶åçç¥è¯ç¹å ¶å®æ¯é常å¤çï¼æ¬æä¹åªæ¯èµ·å°ä¸ä¸ªæç å¼ççä½ç¨èå·²ã
æ¬æå¼å§ä»ç»äºgoroutineçç®åç¨æ³ï¼ç¶åå¼åºäºééçæ¦å¿µã
ééæä¸ç§ï¼
æ ç¼å²éé
ç¼å²éé
ååéé
æåä»ç»äºGoä¸çéæºå¶ï¼åå«æ¯syncå æä¾çsync.Mutexï¼äºæ¥éï¼åsync.RWMutexï¼è¯»åéï¼ã
goroutineå大精深ï¼åé¢çåè¿æ¯è¦æ ¢æ ¢è¸©çã
æç« ä¸çèå¾åæºç é½ä¸ä¼ å°äºGitHubï¼æéè¦çåå¦å¯èªè¡ä¸è½½ã
å°åï¼github.com/yongxinz/gopher/tree/main/sc
ä½è ï¼yongxinz
spinlock(linux kernel 自旋锁)
在Linux内核的世界里,自旋锁spinlock犹如守护者,守护着数据的临界区,确保并发访问的有序性。它不依赖于睡眠,而是通过连续的CPU循环来尝试获取锁,这在中断处理和进程上下文中表现出了极高的效率,但也可能造成CPU资源的浪费。自旋锁有三种主要实现方式:CAS(Compare and Swap)模式,简单直接但竞争随机;Ticket模式,引入公平性但消耗CPU;而MCS(Multi-CPU Scalable)模式,是对Ticket模式的优化,通过链表通知减少了CPU空转,实现了更高的效率与内存利用。
在Linux内核的广泛应用中,自旋锁的性能优化尤为重要,尤其是在多线程竞态的极端场景。例如,MCS模式虽然牺牲了一定的内存使用,但其高效性能使之成为首选。特别是针对内存密集型的应用,qspinlock的出现,通过一个位原子变量巧妙地管理locked、pending和tail,实现了内存节省和高效操作。然而,这种复杂性也意味着在编写和维护时需要更加谨慎。
要使用自旋锁,只需在spinlock.h>中引入相关头文件,定义spinlock并调用spin_lock、spin_unlock进行加锁解锁。举个实例,当处理中断和进程混合的并发任务时,spinlock能够确保数据的一致性。内核提供了多种API,如spin_lock, spin_unlock用于无中断操作,spin_lock_irq, spin_unlock_irq则避免了中断的嵌套,spin_is_locked函数则用于检查锁的状态。
源代码的精髓隐藏在kernel\locking\spinlock.c和qspinlock.c中,头文件位于include\linux\spinlock.h。最新的Linux kernel 5..5 stable tree中包含了这些实现。深入研究源码,你会发现自旋锁的实现层次结构,从spin_lock到do_raw_spin_trylock,再到arch_spin_trylock,映射着qspinlock等优化方案。
对于内核开发者来说,自旋锁的优化是一个动态发展的领域,新的解决方案可能会不断涌现。想要深入了解,不妨关注我们的专业专栏RTFSC(Linux kernel源码轻松读),这里有丰富的原创内容,助你探索更深层次的内核世界。