皮皮网
皮皮网
婚介所 app源码

【ok取网页源码】【梦幻西游源码讨论】【hbuilder爱心代码源码】体验任务源码_体验任务源码怎么用

时间:2024-11-30 18:46:55 分类:知识 编辑:家政分类源码
1.Rust Async: smol源码分析-Executor篇
2.UE4 多线程源码浅析(2——AsyncTask)
3.Nacos源码之配置管理 三TaskManager 任务管理的体验体验使用
4.std::future和std::promise详解(原理、应用、任务任务源码)
5.Java中的源码源码用Timer源码分析及缺陷
6.源码细读-深入了解terser-webpack-plugin的实现

体验任务源码_体验任务源码怎么用

Rust Async: smol源码分析-Executor篇

       本文深入探讨了smol异步运行时中的Executor组件,尤其关注了Executor的体验体验实现细节。在smol的任务任务异步框架中,Executor扮演了核心角色,源码源码用ok取网页源码主要负责执行Future,体验体验并在多线程环境中调度和管理任务。任务任务

       Executor分为三种类型:ThreadLocalExecutor、源码源码用Blocking Executor、体验体验Work Stealing Executor。任务任务ThreadLocalExecutor用于处理不能实现Send特性的源码源码用Future,通过使用并发和非并发队列,体验体验减少了跨线程的任务任务同步开销。Blocking Executor则允许执行阻塞任务,源码源码用并通过动态地开启线程来应对任务的增加,从而提高了资源的利用率。Work Stealing Executor则通过工作窃取的方式,实现了线程间的任务负载均衡,每个工作线程通过主动调用smol::run加入工作环境。

       在Executor的实现中,ThreadLocalExecutor通过线程局部变量来管理任务的生命周期,确保了任务与线程的绑定。Blocking Executor通过自适应地开启线程,以应对任务的增加或减少,从而保持了系统的高效运行。Work Stealing Executor通过工作窃取的方式,实现了任务在多个线程间的合理分配,提高了系统的整体性能。

       每一个Executor的实现都紧密围绕着任务的调度、执行和管理,通过不同策略满足了不同场景下的需求。ThreadLocalExecutor适用于无法实现Send特性的Future,Blocking Executor能够应对阻塞任务的执行,而Work Stealing Executor则通过动态负载均衡实现了任务的高效分配。

       在使用smol异步运行时时,需要注意到几个关键点。async_std的运行时采用了延迟实例化、按需自动启动的策略,简化了使用体验。然而,smol目前采用的是手动启用运行时的策略,可能导致运行时panic问题,梦幻西游源码讨论用户需要额外的配置来启动整个工作窃取运行环境。因此,正确配置和启动smol运行时对于开发者来说是至关重要的。

       总结而言,smol的Executor组件设计精妙,通过不同类型的Executor满足了多样化的异步任务需求。其简洁而高效的设计,使得开发者能够轻松地将现有的库进行异步化处理,极大地提高了开发效率和系统性能。未来,随着smol的发展和完善,其在异步编程领域的应用将更加广泛。

UE4 多线程源码浅析(2——AsyncTask)

       深入探讨虚幻引擎中的多线程系统,本文将重点解析AsyncTask模块,以期对如何在虚幻引擎中高效地运用异步任务有更深的理解。

       在学习AsyncTask之前,我们首先需要理解虚幻引擎中的线程池机制。异步任务系统正是基于线程池构建的,了解线程池的运作机制对于理解AsyncTask至关重要。

       线程池分为基类FQueuedThreadPool与子类FQueuedThreadPoolBase,后者负责定义线程池的内部数据结构,如等待的任务队列、正在执行任务的线程以及线程池中所有线程等。FQueuedThreadPoolBase类通过实现一些接口,如Create、Destroy、AddQueuedWork等,来控制线程池的创建、销毁与任务的调度。

       任务(IQueuedWork)通过继承接口类实现特定功能,包括DoThreadedWork与Abandon等,分别用于执行任务与放弃队列中的任务。任务执行时,线程池中的线程(FQueuedThread)负责调用任务接口,执行具体操作。

       在引擎启动时,虚幻线程池在FEngineLoop::PreInitPreStartupScreen中进行初始化,通过FQueuedThreadPool::Allocate创建三个线程池实例,分别为GThreadPool、GBackgroundPriorityThreadPool与GIOThreadPool,分别用于普通任务、优先级任务与IO操作。hbuilder爱心代码源码

       接下来,我们深入探讨线程池的创建、添加任务与线程获取任务的实现细节。线程池的创建通过FQueuedThreadPool::Allocate完成,初始化线程池指定数量的线程。添加任务时,使用AddQueuedWork接口,确保线程池中的线程能够高效地获取与执行任务。线程获取任务的方式则通过ReturnToPoolOrGetNextJob接口实现,确保线程池的高效运行与任务的合理调度。

       在理解了线程池机制与任务调度原理后,我们转向AsyncTask的解析。AsyncTask作为IQueuedWork的子类,用于实现异步任务的启动与管理。通过FAutoDeleteAsyncTask与FAsyncTask两个类,我们可以更好地理解如何在虚幻引擎中利用异步任务,提升应用性能与用户体验。

       AsyncTask的实现细节涉及任务的启动、执行与取消等操作,以及线程池的选择与任务调度策略的优化。了解这些细节将帮助开发者更高效地构建和管理异步任务,实现复杂场景下的性能优化。

       本文通过深入解析虚幻引擎中的线程池与AsyncTask模块,旨在为开发者提供一套完整的多线程系统理解框架。了解这些内部机制不仅可以提升代码质量,还能在实际项目开发中实现更高效、更灵活的资源管理与任务调度。

Nacos源码之配置管理 三TaskManager 任务管理的使用

       在Nacos的源码中,TaskManager是一个核心组件,它负责管理一系列必须成功执行的任务,以单线程的方式确保任务的执行。TaskManager内部包含待处理的AbstractTask集合和对应的TaskProcessor,后者是执行任务的接口,不同的任务类型需实现自己的执行逻辑。以配置中心的配置文件Dump为例,Nacos会定期将数据库中的数据备份到磁盘,这个操作通过定义的DumpTask和其对应的DumpProcessor来实现。

       DumpTask定义了必要的属性,而DumpProcessor则是专门处理DumpTask的任务处理器,其核心功能是将配置文件保存到磁盘并计算MD5。类似地,DumpAllTask和DumpAllBetaTask也有对应的小程序源码转化处理器,如DumpAllProcessor和DumpAllBetaProcessor。

       DumpAllTask的任务触发和执行发生在DumpService类中,该服务负责初始化配置信息的备份。在初始化时,会创建一个DumpAllProcessor执行器,并启动一个线程,将默认执行器设置为这个处理器。此后,每隔十分钟,DumpService会向TaskManager添加一个新的DumpAllTask,由线程processingThread处理并执行。

std::future和std::promise详解(原理、应用、源码)

       在编程实践中,异步调用的概念允许我们通过将任务分配给其他线程执行,以确保主线程的快速响应能力。这在需要处理耗时、阻塞任务的场景中尤为重要,如并发执行多个部分以加速计算任务的完成。C++提供了std::future和std::promise来处理异步调用和获取结果的过程。这两个类对象之间通过一个共享对象构建了信息传递的通道,实现异步调用结果的同步。异步调用执行方通过std::promise向通道写入结果值,而异步调用创建方通过std::future获取这个结果。

       具体实现中,std::promise用于承诺在异步调用完成后交付结果,而std::future则用于获取这个未来的值。在代码示例中,我们首先创建了一个std::promise对象并获取了用于获取承诺值的std::future对象,从而建立了一个创建方和执行方之间的数据通道。当异步任务执行并完成时,通过std::promise::set_value方法将结果写入通道中。异步调用创建方通过std::future的get方法获取结果,等待异步调用执行完成。

       通过源码实现,我们可以进一步深入理解这两个类的内部工作。例如,std::promise的构造函数创建了一个关联状态对象,用于存储和传递异步调用的返回值。std::future的get方法在获取结果时会阻塞,直到异步调用结果准备好。析构函数中,index文件源码下载std::future会断开与关联状态对象的链接,确保资源的释放。

       此外,我们还讨论了关联状态对象的内部实现,包括其数据成员、成员函数和线程安全实现。通过互斥量和条件变量,关联状态对象保证了并发操作的安全性,并确保一个状态对象只能被一个future和一个promise链接。

       为了实现异常安全,future::get函数使用了RAII(资源获取即初始化)技术,确保在异常返回时资源的正确释放。同时,当异步调用过程中发生异常时,该异常会被逐级向上返回,直到最高层级。为了确保在异步调用执行方线程中捕获到这个异常信息,我们通过std::future和std::promise构建了一个信息传递的通道,允许异常信息从执行方线程传递到结果使用方线程。

Java中的Timer源码分析及缺陷

       使用Java中的Timer类执行定时任务简便易行,但其内部存在一些问题。首先,Timer仅在启动时创建一个执行线程,处理所有定时任务。若某个任务执行时间超过其周期时间,将会导致当前任务执行完毕后,下一个周期任务立即启动,引起任务执行顺序混乱。具体表现为两种情况:若使用schedule方法,过时的任务可能被忽略;若使用scheduleAtFixedRate方法,则过时任务将被丢弃。其次,若TimerTask抛出未捕获的异常,Timer线程将终止,已调度但未执行的TimerTask将不再运行,后续任务调度也将受影响。

       Timer源码分析揭示了上述问题的原因。Timer主要由两个内部类TaskQueue和TimerThread构成。TaskQueue作为最小堆,存放所有定时任务,按任务执行时间点排序。TimerThread作为执行线程,不断检查并执行堆顶任务。

       调度逻辑在TimerThread的run方法中的mainLoop中实现。方法从取出最早执行的任务开始,通过判断其执行时间与当前时间的关系,决定是否执行任务。若任务执行时间在当前时间之前,则任务可能过时,仅执行一次。当任务周期为负数时,任务执行时间被重置,导致任务可能丢失。周期为正数时,任务执行时间按原计划继续,但若执行时间先于当前时间,任务将迅速执行。

       对于异常处理,Timer线程仅捕获InterruptedException,这意味着线程可以在一段时间后被操作系统挂起。若抛出其他异常,线程将终止,已调度但未执行的TimerTask将不再执行,新任务也无法调度。在Android环境中,长连接问题可能导致定时任务执行异常,使用AlarmManager更为稳定。

       JDK5引入ThreadPoolExecutor,提供更灵活的线程池管理,建议用于实现定时任务。使用ThreadPoolExecutor能更好地控制线程资源,避免资源浪费和任务丢失,提升任务执行的稳定性和可靠性。

源码细读-深入了解terser-webpack-plugin的实现

       深入探索 terser-webpack-plugin:代码压缩与优化的秘密</

       terser-webpack-plugin 是一款强大的 webpack 插件,它巧妙地融合了 terser 库的功能,旨在为你的 JavaScript 代码带来高效且优雅的压缩体验。要开始使用,只需参考官方文档中关于 minify-options</的配置指导。这款插件在 webpack 的 compilation 阶段大展身手,通过 optimizeChunkAssets</钩子实现了异步的代码优化,核心逻辑则隐藏在了名为 optimise</的神秘函数中。

       优化艺术</

       在 optimise</函数的舞台,一场资源名的魔术表演正在上演。它首先从 compilation 中获取资源,接着根据 availableNumberOfCores</动态决定是否启用并行模式,创建适当的 Worker</。在这里,pLimit</起到了关键作用,它巧妙地控制并发任务的数量,确保效率与稳定性并存。紧接着,遍历每一个 assetNames,一个个任务被 scheduleTask 准备就绪,等待着执行。

       任务分解</

       而每个任务的核心 scheduleTask,就像拆解谜题一般,包含着获取 asset 信息、代码检查、minify 的选择(Worker 或主线程)、新代码生成和缓存更新,以及对资产内容的即时更新。整个过程紧凑而有序,以资源处理和并发控制为核心。

       并行力量</

       terser-webpack-plugin 的亮点之一就是其 parallel</功能,能根据你的计算机 CPU 核心数动态启动 worker,巧妙地利用了 jest-worker 线程池,优先选择高性能的 worker_threads 模式。它通过私有任务队列和先进先出 (FIFO) 管理机制,确保了多进程处理的高效性和一致性。

       代码简化与压缩</

       minify 函数的精妙之处在于,它直接调用 terser 库的强大功能,略过不必要的 comments 处理,通过出口 API 实现代码的高效压缩。这个过程既简洁又高效,确保了代码质量的提升。

       全面优化流程</

       terser-webpack-plugin 的优化流程井然有序:异步注册 optimizeChunkAssets</,开启多线程编译(Worker),并在 minify 阶段,利用 terser 的强大压缩能力对代码进行深度处理。而 v4 版本更是增添了异步优化点,让并行处理更加灵活和高效。

技术人生阅读源码——Quartz源码分析之任务的调度和执行

       Quartz源码分析:任务调度与执行剖析

       Quartz的调度器实例化时启动了调度线程QuartzSchedulerThread,它负责触发到达指定时间的任务。该线程通过`run`方法实现调度流程,包含三个主要阶段:获取到达触发时间的triggers、触发triggers、执行triggers对应的jobs。

       获取到达触发时间的triggers阶段,通过`JobStore`接口的`acquireNextTriggers`方法获取,由`RAMJobStore`实现具体逻辑。触发triggers阶段,调用`triggersFired`方法通知`JobStore`触发triggers,处理包括更新trigger状态与保存触发过程相关数据等操作。执行triggers对应jobs阶段,真正执行job任务,先构造job执行环境,然后在子线程中执行job。

       job执行环境通过`JobRunShell`提供,确保安全执行job,捕获异常,并在任务完成后根据`completion code`更新trigger。job执行环境包含job对象、trigger对象、触发时间、上一次触发时间与下一次触发时间等数据。Quartz通过线程池提供多线程服务,使用`SimpleThreadPool`实例化`WorkerThread`来执行job任务,最终调用`Job`的`execute`方法实现业务逻辑。

       综上所述,Quartz通过精心设计的线程调度与执行流程,确保了任务的高效与稳定执行,展示了其强大的任务管理能力。

Ray 源码解析(一):任务的状态转移和组织形式

       Ray源码解析系列的第一篇着重于任务的状态管理和组织形式。Ray的核心设计在于其细粒度、高吞吐的任务调度,依赖于共享内存的Plasma存储输入和输出,以及Redis的GCS来管理所有状态,实现去中心化的调度。任务分为无状态的Task和有状态的Actor Method,后者包括Actor的构造函数和成员函数。

       Ray支持显式指定任务的资源约束,通过ResourcesSet量化节点资源,用于分配和回收。在调度时,需找到满足任务资源要求的节点。由于Task输入在分布式存储中,调度后需要传输依赖。对于Actor Method,其与Actor绑定,会直接调度到对应的节点。

       状态变化如任务状态转移、资源依赖等信息,都存储在GCS中。任务状态更改需更新GCS,失联或宕机时,根据GCS中的状态信息重试任务。通过GCS事件订阅驱动任务状态变化。

       文章主要讲述了任务状态的组织方式,如任务队列(TaskQueue)和调度队列(SchedulingQueue)的运作,以及状态转移图和状态枚举类的定义。例如,TaskQueue负责任务的增删查改,其中ReadyQueue通过资源映射优化调度决策。此外,文中还解释了一些关键概念,如Task Required Resources、Task argument、Object、Object Store、Node/Machine等。

       后续文章将深入探讨调度策略和资源管理。让我们期待下篇的精彩内容。

react源码解析(二)时间管理大师fiber

       React的渲染和对比流程在面对大规模节点时,会消耗大量资源,影响用户体验。为了改进这一情况,React引入了Fiber机制,成为时间管理大师,平衡了浏览器任务和用户交互的响应速度。

       Fiber的中文翻译为纤程,是一种内部更新机制,支持不同优先级的任务管理,具备中断与恢复功能。每个任务对应于React Element的Fiber节点。Fiber允许在每一帧绘制时间(约.7ms)内,合理分配计算资源,优化性能。

       相比于React,React引入了Scheduler调度器。当浏览器空闲时,Scheduler会决定是否执行任务。Fiber数据结构具备时间分片和暂停特性,更新流程从递归转变为可中断的循环,通过shouldYield判断剩余时间,灵活调整更新节奏。

       Scheduler的关键实现是requestIdleCallback API,它用于高效地处理碎片化时间,提高用户体验。尽管部分浏览器已支持该API,React仍提供了requestIdleCallback polyfill,以确保跨浏览器兼容性。

       在Fiber结构中,每个节点包含返回指针(而非直接的父级指针),这个设计使得子节点完成工作后能返回给父级节点。这种机制促进了任务的高效执行。

       Fiber的遍历遵循深度优先原则,类似王朝继承制度,确保每一帧内合理分配资源。通过实现深度优先遍历算法,可以构建Fiber树结构,用于渲染和更新DOM元素。

       为了深入了解Fiber,可以使用本地环境调试源码。通过创建React项目并配置调试环境,可以观察Fiber节点的结构和行为。了解Fiber的遍历流程和结构后,可以继续实现一个简单的Fiber实例,这有助于理解React渲染机制的核心。

       Fiber架构是React的核心,通过时间管理机制优化了性能,使React能够在大规模渲染时保持流畅。了解Fiber的交互流程和遍历机制,有助于深入理解React渲染流程。未来,将详细分析优先级机制、断点续传和任务收集等关键功能,揭示React是如何高效地对比和更新DOM树的。

       更多深入学习资源和讨论可参考以下链接:

       《React技术揭秘》

       《完全理解React Fiber》

       《浅谈 React Fiber》

       《React Fiber 源码解析》

       《走进 React Fiber 的世界》

本文地址:http://0553.net.cn/html/54a606693879.html

热点资讯

copyright © 2016 powered by 皮皮网   sitemap