1.学大数据要掌握什么基础?大数据技术基础知识有哪些?
2.cmake MakefileList.txt文件解析与实践
学大数据要掌握什么基础?大数据技术基础知识有哪些?
想要投身大数据领域的源码小伙伴们,对于大数据技术需要掌握哪些基础知识感到困惑,安装需要明确学习方向。源码下面,安装我将为大家梳理一下大数据需要学习的源码内容。首先,安装美国线源码公式学习大数据需要掌握的源码基础知识包括javaSE,EE(SSM)。安装%的源码大数据框架都是使用Java编写的。例如,安装MongoDB是源码最受欢迎的,跨平台的安装,面向文档的源码数据库;Hadoop是用Java编写的开源软件框架,用于分布式存储,安装组装指标源码免费并对非常大的源码数据集进行分布式处理;Spark是Apache Software Foundation中最活跃的项目,是一个开源集群计算框架;Hbase是开放源代码,非关系型,分布式数据库,采用Google的BigTable建模,用Java编写,并在HDFS上运行;MySQL是必须掌握的,SQLon Hadoop又分为batch SQL(Hive),interactive SQL,operation SQL。Linux操作系统也是程序员必须掌握的,大数据的框架安装在Linux操作系统上。
大数据的中东离中国源码系统学习资料已经为大家准备好了,从Linux-Hadoop-spark-......,需要的小伙伴可以点击进入。接下来,需要学习的内容包括大数据离线分析。处理T+1数据时,需要重点关注Hadoop(common、HDFS、MapReduce、YARN)。Hadoop的框架最核心的设计是HDFS和MapReduce。Hadoop主要是环境搭建和数据处理思想。Hadoop用Java编写的开源软件框架,用于分布式存储,多赢指标源码并对非常大的数据集进行分布式处理。HDFS为海量的数据提供了存储,MapReduce则为海量的数据提供了计算。Hive(MPP架构)是大数据数据仓库,通过写SQL对数据进行操作,类似于mysql数据库中的sql。HBase是基于HDFS的NOSQL数据库,面向列的存储。列存储的思想是将元组垂直划分为列族集合,每一个列族独立存储,列族可以退化为只包含一个列的平凡列族。当查询少量列时,列存储模型可以极大的麻将源码设置方法减少磁盘IO操作,提高查询性能。扩展前沿框架包括sqoop、RDBMS、flume、调度框架anzkaban、crontab、Kylin、Impala、ElasticSearch等。
cmake MakefileList.txt文件解析与实践
通过分析Apache Impala项目的构建过程,我们了解到其使用CMake作为构建工具。在项目中,几乎每个子目录都包含有CMakeLists.txt文件,用于描述特定模块的构建需求。在实际应用中,构建CMake C++项目时,可以参考Impala的项目结构进行操作。
在构建前,首先分析项目结构,通常分为三个部分:源代码目录、中间文件目录及构建目录。项目根目录下的CMakeLists.txt文件包含了构建项目的主线内容,而模块目录下的文件则较为简洁,仅包含模块内源代码文件及CMakeLists.txt。
在构建过程中,CMakeLists.txt文件起到了关键作用。项目目录中的文件通常较为复杂,包含了用于构建整个项目的配置信息;而模块目录下的文件则相对简单,主要关注模块内部的源代码组织与构建需求。
在实际操作中,通过合理使用CMakeLists.txt文件,可以实现多模块项目的构建。例如,可以创建一个名为first的子模块,通过执行build.sh脚本进行构建,使用make命令进行编译和链接,确保C++项目和Java项目均能正常编译。
在构建过程中,需要注意清理CMake生成的中间文件。通常建议将中间文件存储于一个专门的build目录中,以避免混淆源码目录。为了简化构建过程,可以创建一个build.sh脚本,用于构建整个项目。
在创建CMakeLists.txt文件时,应注意区分项目层级与模块层级的需求。通过合理组织CMakeLists.txt文件,可以实现多模块项目的协同构建。对于Java模块,同样可以使用CMake进行编译,实现跨语言项目的整合构建。
使用CMake进行异构项目的构建时,可以实现对C++项目、Maven项目、Python项目的统一管理。构建流程通常由一个名为buildall.sh的脚本进行控制,该脚本负责管理项目的依赖检查、下载、构建等过程。在构建过程中,通过设置相关环境变量、构建类型等参数,可以确保构建过程的顺利进行。
总之,通过深入了解CMake的使用方法,结合实际项目需求,可以高效地进行多模块项目的构建,实现跨语言、跨平台的项目整合与管理。