1.圣诞树代码python
2.TreeMap就这么简单源码剖析
3.面试官:从源码分析一下TreeSet(基于jdk1.8)
4.Redis 源码radix tree 源码解析
5.UE 八叉树Octree2源码分析
6.2022圣诞树代码
圣诞树代码python
输入相关代码就可以画出一个圣诞树,具体代码如下所示:def print_tree(height):
for i in range(height):
print(' ' * (height - i - 1) + '*' * (2 * i + 1))
print_tree()
这个函数print_tree接受一个参数height,源码这个参数决定了树的源码高度。对于每一行,源码我们先打印一些空格,源码数量是源码Linux内核源码镜像height-i-1,然后再打印一些星号,源码数量是源码2*i+1。这样就可以打印出一个圣诞树的源码图案。可以通过改变print_tree函数的源码参数来改变树的大小。
Python语言优点
Python是源码一种代表简单主义思想的语言。阅读一个良好的源码Python程序就感觉像是在读英语一样。它使你能够专注于解决问题而不是源码去搞明白语言本身。Python极其容易上手,源码因为Python有极其简单的源码说明文档。风格清晰划一、强制缩进。
Python的底层是用C语言写的,很多标准库和第三方库也都是用C写的,运行速度非常快。Python是炸金花 房卡 源码FLOSS(自由/开放源码软件)之一。使用者可以自由地发布这个软件的拷贝、阅读它的源代码、对它做改动、把它的一部分用于新的自由软件中。
以上内容参考:百度百科-Python
TreeMap就这么简单源码剖析
本文主要讲解TreeMap的实现原理,使用的是JDK1.8版本。
在开始之前,建议读者具备一定的数据结构基础知识。
TreeMap的实现主要通过红黑树和比较器Comparator来保证元素的有序性。如果构造时传入了Comparator对象,则使用Comparator的compare方法进行元素比较。否则,使用Comparable接口的compareTo方法实现自然排序。
TreeMap的核心方法有put、get和remove等。put方法用于插入元素,同时会根据Comparator或Comparable对元素进行排序。get方法用于查找指定键的值,remove方法则用于删除指定键的元素。
遍历TreeMap通常使用EntryIterator类,b2c php源码该类提供了按顺序遍历元素的方法。TreeMap的遍历过程基于红黑树的结构,通过查找、比较和调整节点来实现。
总之,TreeMap是一个基于红黑树的有序映射集合,其主要特性包括元素的有序性、高效的时间复杂度以及灵活的比较方式。在设计和实现需要有序映射的数据结构时,TreeMap是一个不错的选择。
如有错误或疑问,欢迎在评论区指出,让我们共同进步。
请注意,上述HTML代码片段经过了精简和格式调整,保留了原文的主要内容和结构,但为了适应HTML格式并删除了不相关的内容(如标题、关注转发等),在字数控制上也有所调整。
面试官:从源码分析一下TreeSet(基于jdk1.8)
面试官可能会询问关于TreeSet(基于JDK1.8)的java项目开发全程实录 源码源码分析,实际上,TreeSet与HashSet类似,都利用了TreeMap底层的红黑树结构。主要特性包括:
1. TreeSet是基于TreeMap的NavigableSet实现,元素存储在TreeMap的key中,value为一个常量对象。
2. 不是直接基于TreeMap,而是NavigableMap,因为TreeMap本身就实现了这个接口。
3. 对于内存节省的疑问,TreeSet在add方法中使用PRESENT对象避免了将null作为value可能导致的逻辑冲突。添加重复元素时,PRESENT确保了插入状态的区分。
4. 构造函数提供了多样化的选项,允许自定义比较器和排序器,基本继承自HashSet的特性。
5. 除了基本的增删操作,TreeSet还提供了如返回子集、头部尾部元素、区间查找等方法。b2b平台 源码
总结来说,TreeSet在排序上优于HashSet,但插入和查找操作由于树的结构会更复杂,不适用于对速度有极高要求的场景。如果不需要排序,HashSet是更好的选择。
感谢您的关注,关于TreeSet的源码解析就介绍到这里。
Redis radix tree 源码解析
Redis 实现了不定长压缩前缀的 radix tree,用于集群模式下存储 slot 对应的所有 key 信息。本文解析在 Redis 中实现 radix tree 的核心内容。
核心数据结构的定义如下:
每个节点结构体 (raxNode) 包含了指向子节点的指针、当前节点的 key 的长度、以及是否为叶子节点的标记。
以下是插入流程示例:
场景一:仅插入 "abcd"。此节点为叶子节点,使用压缩前缀。
场景二:在 "abcd" 之后插入 "abcdef"。从 "abcd" 的父节点遍历至压缩前缀,找到 "abcd" 空子节点,插入 "ef" 并标记为叶子节点。
场景三:在 "abcd" 之后插入 "ab"。ab 为 "abcd" 的前缀,插入 "ab" 为子节点,并标记为叶子节点。同时保留 "abcd" 的前缀结构。
场景四:在 "abcd" 之后插入 "abABC"。ab 为前缀,创建 "ab" 和 "ABC" 分别为子节点,保持压缩前缀结构。
删除流程则相对简单,找到指定 key 的叶子节点后,向上遍历并删除非叶子节点。若删除后父节点非压缩且大小大于1,则需处理合并问题,以优化树的高度。
合并的条件涉及:删除节点后,检查父节点是否仍为非压缩节点且包含多个子节点,以此决定是否进行合并操作。
结束语:云数据库 Redis 版提供了稳定可靠、性能卓越、可弹性伸缩的数据库服务,基于飞天分布式系统和全SSD盘高性能存储,支持主备版和集群版高可用架构。提供全面的容灾切换、故障迁移、在线扩容、性能优化的数据库解决方案,欢迎使用。
UE 八叉树Octree2源码分析
UE中八叉树Octree2源码分析,本文旨在深入理解UE八叉树的具体实现。八叉树概念广泛熟悉,但初次接触UE实现时仍需思考。UE八叉树简化应用,多数直接使用方便。本文针对UE4.至UE5.1版本八叉树源码进行详细解析。
UE八叉树主要结构包括:TreeNodes、ParentLinks、TreeElements、FreeList、RootNodeContext和MinLeafExtent。TreeNodes存储节点信息,每个FNode记录当前节点元素数量及子节点Index;ParentLinks记录节点父节点ID;TreeElements存储元素数据;FreeList记录空闲FNode下标;RootNodeContext和MinLeafExtent与八叉树构造相关,用于确定节点半径。
UE八叉树构造过程依赖AddElement方法,实现在AddElementInternal中。首先判断节点是否为叶子节点。若无子节点且元素数量超过预设阈值,或节点半径小于MinLeafExtent,则创建子节点。否则,直接将元素加入当前节点。若需创建子节点,清空当前节点元素,分配八个子节点,递归处理非叶节点情况。
RemoveElement方法根据ElementId移除元素。首先在TreeElements中移除元素,然后从节点向上遍历,检查元素数量过少的节点,进行塌缩重构,将子节点元素移入当前节点。
UE八叉树查询接口包括FindElement、FindElementsWithBoundsTest等,核心目的是遍历节点和子节点以满足查询条件。UE八叉树用于高效空间数据处理,通过Octree2类声明实现。例如,PrecomputedLightVolume类定义ElementType和OctreeSemantics,便于特定应用使用。
UE八叉树内存管理关键在于TreeElement数组,使用TInlineAllocator或FDefaultAllocator需考虑应用场景。空间数据结构如四叉树、八叉树等在空间划分算法中具有重要应用,优化碰撞检测及实现复杂场景。
圣诞树代码
1. 绘制年的圣诞树使用Python代码。
2. 创建一个新的Python文件tree1.py,或者直接运行以下代码:
```python
# 声明树的高度
height = 5
# 树的雪花数,初始为1
stars = 1
# 以树的高度作为循环次数
for i in range(height):
# 打印空格和星号来形成树的每一层
print(' ' * (height - i) + '*' * stars)
# 雪花数增加,以形成树的形状
stars += 2
```
3. 代码是程序员使用开发工具支持的语言编写的源文件,是一套由字符、符号或信号码元以离散形式表示信息的明确规则体系。
4. 代码设计的原则包括唯一确定性、标准化和通用性、可扩充性与稳定性、便于识别与记忆、力求简短与格式统一以及容易修改等。
5. 源代码是代码的一个分支,从某种意义上说,源代码相当于代码。
6. 在现代程序设计语言中,源代码通常以文本文件的形式出现,最常用的格式是为了编译成计算机程序。
7. 计算机源代码的最终目的是将人类可读文本转换成计算机可执行的二进制指令,这一过程称为编译,由编译器完成。