1.搭建源码调试环境—RocketMQ源码分析(一)
2.RocketMQ源码分析:Broker概述+同步消息发送原理与高可用设计及思考
3.RocketMQ 5.0: POP 消费模式 原理详解 & 源码解析
4.RocketMQ 消费者(2)客户端设计和启动流程详解 & 源码解析
5.一文详解RocketMQ-Spring的消费消费源码解析与实战
6.从源码看RocketMQ的消费端负载均衡和Rebalance机制
搭建源码调试环境—RocketMQ源码分析(一)
搭建源码调试环境,深入分析 RocketMQ 的源码内部运行机制。理解 RocketMQ 的代码目录结构是搭建调试环境的第一步,有助于我们快速定位代码功能和问题。消费消费 目录结构主要包括: acl:权限控制模块,源码用于指定话题权限,代码传奇易语言打怪源码确保只有拥有权限的消费消费消费者可以进行消费。 broker:RocketMQ 的源码核心组件,负责接收客户端发送的代码消息、存储消息并传递给消费端。消费消费 client:包含 Producer、源码Consumer 的代码代码,用于消息的消费消费生产和消费。 common:公共模块,源码提供基础功能和服务。代码 distribution:部署 RocketMQ 的工具,包含 bin、conf 等目录。 example:提供 RocketMQ 的示例代码。 filter:消息过滤器。 namesvr:NameServer,所有 Broker 的注册中心。 remoting:远程网络通信模块。 srvutil:工具类。 store:消息的存储机制。 style:代码检查工具。 tools:命令行监控工具。 获取 RocketMQ 源码:从 Github 下载最新版本或选择其他版本。遇到下载困难时,可留言或私信寻求帮助。 导入源码到 IDE 中,确保 Maven 目录正确,最新货源网源码刷新并等待依赖下载完成。 启动 RocketMQ 的 NameServer 和 Broker,配置相关参数,如环境变量、配置文件等。确保正确启动后,通过查看启动日志检查运行状态。 进行消息生产与消费测试,使用源码自带的示例代码进行操作。设置 NameServer 地址后,启动 Producer 和 Consumer,验证消息成功发送与消费。 使用 RocketMQ Dashboard 监控 RocketMQ 运行情况,持续优化和调试。RocketMQ源码分析:Broker概述+同步消息发送原理与高可用设计及思考
Broker在RocketMQ架构中扮演关键角色,主要负责存储消息,其核心任务在于持久化消息。消息通过生产者发送给Broker,而消费者则从Broker获取消息。Broker的物理部署架构图清晰展示了这一过程。
从配置文件角度,我们深入探讨Broker的存储设计,重点关注以下几个方面:消息发送、消息协议、消息存储与检索、消费队列维护、消息消费与重试机制。深入分析Broker内部实现,包括消息发送过程、获取topic路由信息、选择消息队列以及发送消息至特定Broker。蝙蝠聊天苹果版源码
消息发送过程包括参数解析、发送方式选择、回调函数配置以及超时时间设定。同步消息发送流程主要分为获取路由信息、选择消息队列、发送消息、更新失败策略与处理同步调用方式。获取路由信息过程包括从本地缓存尝试获取、从NameServer获取配置信息更新缓存,以及针对特定或默认topic的路由信息查询。
选择消息队列时考虑Broker负载均衡,通过轮询机制获取下一个可用消息队列。选择队列逻辑涉及发送失败延迟规避机制,确保选择的Broker正常,并根据Broker状态进行排序后选择一个队列。消息发送至指定Broker,使用长连接发送并存储消息,同步消息发送包含重试机制,异步消息发送则在回调中处理重试。
思考题:分析消息发送异常处理,包括NameServer宕机与Broker挂机情况。NameServer宕机时,生产者可利用本地缓存继续发送消息,而Broker挂机会导致消息发送失败,但通过故障延迟机制可确保高可用性设计。理解这些机制与流程,有助于深入掌握RocketMQ的同步消息发送原理与高可用设计。
RocketMQ 5.0: POP 消费模式 原理详解 & 源码解析
RocketMQ 5.0 引入 Pop 消费模式,用于解决 Push 消费模式存在的痛点。Pop 消费模式将客户端的重平衡逻辑迁移至 Broker 端,使得消息消费过程更加高效,轻之文库网站源码避免消息堆积和横向扩展能力受限的问题。引入轻量化客户端后,通过 gRPC 封装 Pop 消费接口,实现了多语言支持,无需在客户端实现重平衡逻辑。
Pop 消费模式的原理在于客户端仅需发送 Pop 请求,由 Broker 端根据请求分配消息队列并返回消息。这样可以实现多客户端同时消费同一队列,避免单一客户端挂起导致消息堆积,同时也消除了频繁重平衡导致的消息积压问题。
Pop 消费流程涉及消息拉取、不可见时间管理、消费失败处理和消息重试等关键环节。消息拉取时,系统会为一批消息生成 CheckPoint,并在 Broker 内存中保存,以便与 ACK 消息匹配。消息不可见时间机制确保在规定时间内未被 ACK 的消息将被重试。消费失败时,客户端通过修改消息不可见时间来调整重试策略。当消费用时超过预设时间,Broker 也会将消息放入重试队列。通过定时消息,Broker 可以提前消费重试队列中的消息,与 ACK 消息匹配,实现高效消息处理。
在 Broker 端,重平衡逻辑也进行了优化。Pop 模式的重平衡允许多个消费者同时消费同一队列,通过 popShareQueueNum 参数配置额外的负载获取队列次数。Pop 消息处理涉及从队列中 POP 消息、影视tv盒子版源码生成 CheckPoint 用于匹配 ACK 消息、以及存储 CheckPoint 与 Ack 消息匹配。Broker 端还通过 PopBufferMergeService 线程实现内存与磁盘中的 CheckPoint 和 Ack 消息匹配,以及消息重试处理。
源码解析部分涉及 Broker 端的重平衡逻辑、Pop 消息处理、Ack 消息处理、CheckPoint 与 Ack 消息匹配逻辑等关键组件的实现细节,这些细节展示了 RocketMQ 5.0 如何通过优化消费模式和流程设计,提升消息消费的效率和稳定性。
RocketMQ 消费者(2)客户端设计和启动流程详解 & 源码解析
RocketMQ 消费者系列的第二篇文章深入剖析了客户端设计和启动流程。本文将带你了解消费者类的结构、启动过程,以及源码细节。
首先,消费者客户端设计的核心是DefaultMQPullConsumer和DefaultMQPushConsumer,它们都实现了消费者接口,并扩展了客户端配置类。DefaultXXXXConsumer实际上是一个代理,内部通过DefaultMQXXXXConsumerImpl执行大部分方法,后者包含了MQClientInstance,它是客户端实例的管理核心,负责与Broker通信和存储元数据。
消费者启动涉及这三个关键类:DefaultMQPullConsumer/ConsumerImpl和MQClientInstance。启动流程分为新建消费者、消费者启动以及客户端实例的初始化。拉消费者和推消费者虽然操作不同,但内部都依赖拉取消息服务,如PullMessageService,推消费者还利用ConsumeMessageService接口进行并发或顺序消费。
拉模式和推模式的消费者启动流程相似,但推消费者更注重消息推送的自动处理。在DefaultMQPushConsumer的启动中,实际是调用其代理类的启动方法,而MQClientInstance则负责初始化客户端通信和设置。
源码解析部分,我们会在后续文章中详细剖析DefaultMQProducerImpl和MQClientInstance的启动过程。想要获取更多消息中间件的源码解析和最新动态,别忘了关注我们的公众号消息中间件(middleware-mq),同时,本文由OpenWrite平台发布。
一文详解RocketMQ-Spring的源码解析与实战
RocketMQ-Spring源码解析与实战概览
这篇文章详细阐述了在Spring Boot项目中如何运用rocketmq-spring SDK进行消息收发,以及开发者视角下SDK的设计逻辑。通过一步步操作流程,理解其在生产者和消费者端的实际应用。SDK简介
rocketmq-spring本质上是一个Spring Boot启动器,通过“约定优于配置”的理念简化集成过程。只需在pom.xml中引入依赖,并在配置文件中进行简单的配置,如添加名字服务地址和生产者组。配置与操作流程
1. 在pom.xml引入依赖并配置,如生产者和消费者配置。生产者配置:包含名字服务地址和生产者组
消费者配置:实现消息监听器
核心源码分析
rocketmq-spring的核心模块包括启动器、SDK模块和示例代码模块,源码中着重解析了RocketMQTemplate类和消费者启动机制,如生产者模板封装和消费者消息处理逻辑。生产者模板与消费者启动
生产者:通过RocketMQProperties对象绑定配置,创建生产者Bean并整合到RocketMQTemplate中
消费者:通过ListenerContainerConfiguration自动启动,封装RocketMQListener的消费逻辑
进阶学习
要深入学习rocketmq-spring,可以从实际操作、模块设计、starter设计思路和源码理解四个方面逐步提升。从源码看RocketMQ的消费端负载均衡和Rebalance机制
RocketMQ消费端的负载均衡设计旨在均匀分布partition,确保各个consumer承担合理负载。如图所示,各个partition分布于多个consumer之间,确保均衡消费。此实现依赖于RebalanceImpl类,具体通过doRebalance方法执行负载均衡策略,此方法调用rebalanceByTopic方法实现负载均衡逻辑。核心算法在AllocateMessageQueueStrategy类中,使用默认构造器可见,其默认策略是AllocateMessageQueueAveragely实现,遵循连续分配原则,确保负载均衡。
在不同场景下,RocketMQ提供了多种负载均衡策略供选择,以适应特定需求。例如,对于消费多个topic的场景,尤其是topic数量多且partition与机器数量非整数倍情况,自定义负载均衡策略更为合适,以避免部分consumer承担过重负担,导致集群内机器水位差异过大。
关于何时重新执行负载均衡(Rebalance),涉及MQClientInstance类的监控机制。在DefaultMQPushConsumerImpl的start方法中,通过创建RebalanceService对象实现定时负载均衡。RebalanceService类的run方法中,默认设置每秒执行一次doRebalance操作,通过ServiceThread的实现确保在consumer出现宕机或新consumer连接时,能在秒内完成负载均衡,确保集群内负载分布的动态平衡。
RocketMQ之消费者,重平衡机制与流程详解附带源码解析
本文深入探讨了RocketMQ消费者中的重平衡机制与流程。重平衡是消费者开始消费过程的起点,其目的是将多个消费者分配到多个Queue上以提高消费速率。由于每个Queue只能由一个消费者同时消费,消费者数量的变化需要通过调整Queue的分配来实现,这就是重平衡。
RocketMQ使用一种固定的分配策略,确保所有消费者的分配结果一致,以实现幂等性。重平衡的触发有两种方式:主动触发由消费者的启动和停止引起,被动触发则是每秒进行一次检查或收到Broker发送的重平衡请求。重平衡主要涉及RebalanceImpl类和RebalanceService类,客户端完成重平衡流程。
RabbitImpl类中实现了整个重平衡流程,并保存了必要的基本信息和重分配策略类allocateMessageQueueStrategy。RebalanceImpl中包含了一系列逻辑和抽象方法,根据消费者类型不同有不同实现。主动触发和被动触发在流程中分别对应**和蓝色标识。
当重平衡线程调用客户端实例的doRebalance方法进行重平衡时,客户端实例仅遍历所有注册的消费者,获取它们的重平衡实现并调用RebalanceImpl#doRebalance方法。该方法逻辑涉及处理队列和拉取请求,其中处理队列与消息队列一一对应,拉取请求使用一次后重新放入等待队列以进行下一次拉取,重平衡是消息拉取的唯一起点。
RocketMQ提供了六种队列分配策略以适应不同场景,实现灵活的重平衡机制。源码解析部分详细分析了RebalanceService和RebalanceImpl类,特别强调了doRebalance方法作为重平衡入口,以及对Topic进行重平衡、更新订阅队列和处理队列列表、处理消息队列变化的流程。
RocketMQ原理(4)——消息ACK机制及消费进度管理
在 RocketMQ 中,消息的 ACK 机制和消费进度管理是保证消息成功消费的关键。在 PushConsumer 中,消息消费的管理主要通过消费回调来实现。当业务实现消费回调时,只有在回调函数返回 ConsumeConcurrentlyStatus.CONSUME_SUCCESS 的情况下,RocketMQ 才会认为该批消息(默认每批为 1 条)已被成功消费。如果消息消费失败,例如遇到数据库异常或余额不足等情况,业务应返回 ConsumeConcurrentlyStatus.RECONSUME_LATER,表示消息需要重新尝试。
为了确保消息至少被成功消费一次,RocketMQ 会将消费失败的消息重新投递给 Broker(消息主题将变更为重试主题),并在指定时间(默认为 秒,可配置)后再次将消息投递到该 ConsumerGroup。如果消息在多次尝试后仍无法成功消费,则会投递到死信队列,应用程序可以监控死信队列并采取人工干预措施。
当启动一个新的实例时,PushConsumer 会根据先前存储的消费进度(consumer offset)来发起第一次 Pull 请求。如果当前消费进度在 Broker 中不存在,这表明是一个全新的消费组,此时客户端可以选择不同策略。社区中常见的一种疑问是:“为什么我设置了 CONSUME_FROM_LAST_OFFSET,但历史消息还是被消费了?” 这是因为只有全新的消费组才会使用特定策略,而老的消费组则会继续按已存储的进度消费。
为了优化性能并减少重复消费的风险,RocketMQ 采用一种与单条消息单独 ACK 不同的机制来管理消费进度。消费进度记录的是批次中最小的 offset 值,这意味着如果一批消息中有多个 offset,只有最小的 offset 会被更新。这种设计可以提高性能,但也带来潜在的重复消费问题,即消费进度可能仅更新至已消费消息的最小 offset,导致后续消息被重复消费。为解决这一问题,RocketMQ 在较新版本中引入了流控机制,通过配置 consumeConcurrentlyMaxSpan,当缓存中消息的最大值与最小值差距超过此阈值(默认为 )时,会暂停消息的拉取,以缓解重复消费风险。
尽管如此,解决消费进度卡住的问题,最直接的方法是设置消费超时时间。在 RocketMQ 3.5.8 及之后的版本中,引入了超时处理机制,以应对消费进度卡住的情况。通过源码分析,可以看到该方案在一定程度上解决了消费进度卡住的问题,但仍存在一些不足之处。