1.BERT源码逐行解析
2.Android Framework源码解析,解析解析看这一篇就够了
3.Glide源码分析
4.Vue3核心源码解析 (一) : 源码目录结构
5.React设计原理,页面源码页面源码由浅入深解析 react18 源码(一)
6.Vert.x 源码解析(4.x)——Context源码解析
BERT源码逐行解析
解析BERT源码,关键在于理解Tensor的页面源码页面源码形状,这些我在注释中都做了标注,解析解析以来自huggingface的页面源码页面源码自动跳转到别的网站源码PyTorch版本为例。首先,解析解析BertConfig中的页面源码页面源码参数,如bert-base-uncased,解析解析包含了word_embedding、页面源码页面源码position_embedding和token_type_embedding三部分,解析解析它们合成为BertEmbedding,页面源码页面源码形状为[batch_size,解析解析 seq_len, hidden_size],如( x x )。页面源码页面源码
Bert的解析解析基石是Multi-head-self-attention,这部分是理解BERT的核心。代码中对相对距离编码有详细注释,通过计算左右端点位置,形成一个[seq_len, seq_len]的相对位置矩阵。接着是BertSelfOutput,执行add和norm操作。
BertAttention则将Self-Attention和Self-Output结合起来。BertIntermediate部分,对应BERT模型中的一个FFN(前馈神经网络)部分,而BertOutput则相当直接。最后,BertLayer就是将这些组件组装成一个完整的层,BERT模型就是由多个这样的层叠加而成的。
Android Framework源码解析,看这一篇就够了
深入解析Android Framework源码,理解底层原理是Android开发者的关键。本文将带你快速入门Android Framework的层次架构,从上至下分为四层,掌握Android系统启动流程,了解Binder的进程间通信机制,剖析Handler、AMS、WMS、Surface、钻石溯源码SurfaceFlinger、PKMS、InputManagerService、DisplayManagerService等核心组件的工作原理。《Android Framework源码开发揭秘》学习手册,全面深入地讲解Android框架初始化过程及主要组件操作,适合有一定Android应用开发经验的开发者,旨在帮助开发者更好地理解Android应用程序设计与开发的核心概念和技术。通过本手册的学习,将能迅速掌握Android Framework的关键知识,为面试和实际项目提供有力支持。
系统启动流程分析覆盖了Android系统层次角度的三个阶段:Linux系统层、Android系统服务层、Zygote进程模型。理解这些阶段的关键知识,对于深入理解Android框架的启动过程至关重要。
Binder作为进程间通信的重要机制,在Android中扮演着驱动的角色。它支持多种进程间通信场景,包括系统类的打电话、闹钟等,以及自己创建的WebView、视频播放、音频播放、大图浏览等应用功能。
Handler源码解析,揭示了Android中事件处理机制的核心。深入理解Handler,对于构建响应式且高效的Android应用至关重要。
AMS(Activity Manager Service)源码解析,探究Activity管理和生命周期控制的原理。掌握AMS的实现细节,有助于优化应用的用户体验和性能。
WMS(Window Manager Service)源码解析,了解窗口管理、布局和显示策略的实现。深入理解WMS,对于构建美观且高效的小球进洞源码用户界面至关重要。
Surface源码解析,揭示了图形渲染和显示管理的核心。Surface是Android系统中进行图形渲染和显示的基础组件,掌握其原理对于开发高质量的图形应用至关重要。
基于Android.0的SurfaceFlinger源码解析,探索图形渲染引擎的实现细节。SurfaceFlinger是Android系统中的图形渲染核心组件,理解其工作原理对于性能优化有极大帮助。
PKMS(Power Manager Service)源码解析,深入理解电池管理策略。掌握PKMS的实现,对于开发节能且响应迅速的应用至关重要。
InputManagerService源码解析,揭示了触摸、键盘输入等事件处理的核心机制。深入理解InputManagerService,对于构建响应式且用户体验优秀的应用至关重要。
DisplayManagerService源码解析,探究显示设备管理策略。了解DisplayManagerService的工作原理,有助于优化应用的显示性能和用户体验。
如果你对以上内容感兴趣,点击下方卡片即可免费领取《Android Framework源码开发揭秘》学习手册,开始你的Android框架深入学习之旅!
Glide源码分析
深入剖析Glide源码:解析与理解其架构与机制
1. Glide三大关键流程
使用Glide加载时,主要包含三大关键流程:with、load、into。通过链式调用这些方法,能轻松完成加载任务,但背后蕴含的原理复杂且源码规模庞大。分析源码时,需抓住重点。
1.1 with主线
with方法是Glide中的重要接口,可传入Activity或Fragment,与页面生命周期紧密关联。在分析中,我们曾遇到线上事故,源码设计培训因伙伴在with方法中传入了Context而非Activity,导致页面消失后请求仍在后台运行,最终刷新页面时找不到加载的容器直接崩溃。因此,with方法与页面生命周期息息相关。
1.1.1 Glide创建
通过getRetriever方法最终获得RequestManagerRetriever对象。在Glide的构造方法中,通过双检锁方式创建Glide对象。之后,调用Glide的build方法创建一个Glide实例,传入缓存和Bitmap池等对象。
1.1.2 RequestManagerRetriever
Glide的build方法直接创建RequestManagerRetriever对象,需requestManagerFactory参数,若未定义则默认为DEFAULT_FACTORY。获取此对象后,方便后续加载。
1.1.3 生命周期管理
在获取RequestManagerRetriever后,调用其get方法。当with方法传入Activity时,会在子线程调用另一个get方法,而主线程中通过fragmentGet方法,创建空Fragment并同步页面生命周期。
1.1.4 总结
with方法主要完成:创建Glide对象,绑定页面生命周期。
1.2 load主线
通过with方法获得RequetManager,调用load方法创建RequestBuilder对象,将加载类型赋值给model。剩余操作由into方法负责。
1.3 into主线
into方法负责Glide的创建和生命周期绑定。传入ImageView,根据其scaleType属性复制RequestOption。into方法调用buildRequest返回Request,并判断是否能执行请求。执行请求或从缓存获取后回调onResourceReady。
1.3.1 发起请求
创建request后,调用RequetManager的track方法,执行请求并添加到请求队列。判断isPaused状态,etty源码学习决定是否发起网络请求。成功加载或从缓存获取后回调onResourceReady。
1.3.2 三级缓存
通过EngineKey获取资源,从内存、活动缓存和LRUCache中查找。若未获取到,则发起网络请求。成功后加入活跃缓存并回调onResourceReady。
1.3.3 onResourceReady
资源加载完成或从缓存获取后,调用SingleRequest的onResourceReady方法。判断是否设置RequestListener,最终调用target的onResourceReady方法,显示。
1.3.4 小结
into方法主要步骤包括:创建加载请求、判断请求执行、从缓存获取资源、网络请求与资源回调。
2. 手写简单Glide框架
实现Glide需理解其特性,特别是生命周期绑定和三级缓存。手写时,着重实现这两点。在load方法中,支持多种资源加载,并使用RequestOption保存请求参数。在into方法中,传入ImageView控件,并在buildTargetRequest方法中判断是否发起网络请求。实现三级缓存逻辑,确保加载效率。使用协程进行线程切换,提高性能。通过简单API加载本地或网络链接,实现Glide功能。
Vue3核心源码解析 (一) : 源码目录结构
通过软件框架源码阅读,深入理解框架运行机制,API设计、原理及流程成为开发者进阶的关键。Vue 3源码相较于Vue 2版本的改进明显,采用Monorepo目录结构,引入TypeScript作为开发语言,新增特性和优化显著。
启动Vue3源码,最新版本为V3.3.0-alpha.5。下载后进入core文件夹,使用Yarn进行构建。安装依赖后,执行npm run dev启动调试模式,可直观查看完整的源代码目录结构。
核心模块包括compiler-core、compiler-dom、runtime-core、runtime-dom。compiler模块在编译阶段负责将.vue文件转译成浏览器可识别的.js文件,runtime模块则负责程序运行时的处理。reactivity目录内是响应式机制的源码,遵循Monorepo规范,每个子模块独立编译打包,通过require引入。
构建Vue 3版本可使用命令,构建结果保存在core\packages\vue\dist目录下。选择性构建可通过命令实现,具体参数配置在core/rollup.config.js中查看。对于客户端编译模板,需构建完整版本,而使用Webpack的vue-loader时,.vue文件中的模板在构建时预编译,无需额外编译器。浏览器直接打开页面时采用完整版本,构建工具如Webpack引入运行时版本。Vue的构建脚本源码位于core/scripts下。
React设计原理,由浅入深解析 react 源码(一)
React设计原理详解:深入理解React 源码(一)
React的核心工具之一是jsx,它是一种语法扩展,开发者编写的代码会被Babel编译成ReactElement,进一步转化为FiberNode,这是一种虚拟DOM在React中的实现,它能表达组件状态和节点关系,同时具备可扩展性。 FiberNode的工作方式采用深度优先遍历(DFS)策略,递归地处理ReactElement。在渲染过程中,递归分为beginWork(开始工作)和completeWork(完成工作)两个阶段。在ReactDOM的createRoot和render方法中,scheduleUpdateOnFiber和processUpdateQueue负责更新和创建子fiber节点。 在commit阶段,关键步骤包括执行root上的mutation,以及对Host类型的FiberNode构建离屏DOM树。ChildReconciler的两个关键点是子ReactElement到子fiber的创建方式和flag标识的设置。最后,学习者需要注意的是,通过阅读本文,可以关注以下三点:理解jsx与FiberNode的关系
掌握React的递归渲染过程和commit阶段的子阶段
反思和分享你的学习体验,一起探讨React的深入知识
如果你觉得这篇文章有价值,别忘了在留言区分享你的见解,或者将其推荐给你的朋友。让我们一起深化对React 源码的理解。Vert.x 源码解析(4.x)——Context源码解析
Vert.x 4.x 源码深度解析:Context核心概念详解 Vert.x 通过Context这一核心机制,解决了多线程环境下的资源管理和状态维护难题。Context在异步编程中扮演着协调者角色,确保线程安全的资源访问和有序的异步操作。本文将深入剖析Context的源码结构,包括其接口设计、关键实现以及在Vert.x中的具体应用。Context源代码解析
Context接口定义了基础的事件处理功能,如立即执行和阻塞任务。ContextInternal扩展了Context,包含内部方法和功能,通常开发者无需直接接触,如获取当前线程的Context。在vertx的beginDispatch和endDispatch方法中,Context的切换策略取决于线程类型,Vertx线程会使用上下文切换,而非Vertx线程则依赖ThreadLocal。 ContextBase是ContextInternal的实现类,负责执行耗时任务,内部包含TaskQueue来管理任务顺序。WorkerContext和EventLoopContext分别对应工作线程和EventLoop线程的执行策略,它们通过execute()、runOnContext()和emit()方法处理任务,同时监控性能。 Context的创建和获取贯穿于Vert.x的生命周期,它在DeploymentManager的doDeploy方法中被调用,如NetServer和NetClient等组件的底层实现也依赖于Context来处理网络通信。额外说明
Context与线程并非直接绑定,而是根据场景动态管理。部署时创建新Context,非部署时优先获取Thread和ThreadLocal中的Context。当执行异步任务时,当前线程的Context会被暂时替换,任务完成后才恢复。源码中已加入详细注释,如需获取完整注释版本,可联系作者。 Context的重要性在于其在Vert.x的各个层面如服务器部署、EventBus通信中不可或缺,它负责维护线程同步与异步任务的执行顺序,是异步编程中不可或缺的基石。理解Context的实现,有助于更好地利用Vert.x进行高效开发。解析页面是什么意思?
解析页面是指对于网页的HTML代码进行分析和理解,以便更好地理解网页的结构和内容。在网络上,信息量非常大,而解析页面能够突破表面信息,对于网页的深度剖析和分析,为我们提供更多的信息,从而了解更多的事实。
要解析一个网页,首先需要使用特定的工具和软件。在解析页面的时候,可以使用一些插件或者软件,例如浏览器中的“开发者工具”、“火狐浏览器”的“Firebug”、Chrome浏览器的“Inspected”等。选定合适的工具,即可打开网页的源代码,对网页中的元素、文本、等进行分析,以获得更丰富的信息。
「安卓按键精灵」扒别人脚本的界面源码
在一次技术交流中,有朋友向我咨询如何解析别人的安卓脚本界面源码,我虽不擅长直接破解,但分享一下如何通过常规手段揭开这一层神秘面纱。
界面的代码其实并不复杂,主要由几个基础元素构成,模仿起来并不困难。不过,这里我们不走寻常路,而是要深入探究其背后的逻辑和文件结构。
要找到界面代码,首先需要进入脚本的安装目录,通常在"/data/data/"后面跟随应用的包名。打开这个目录,找到其中的"files"文件夹,这个文件夹往往是保存应用界面配置的地方,基于以往的经验,我们先一探究竟。
在一堆与脚本相关的文件中,我们使用文本读取命令逐一探索。代码逻辑是逐个读取文件内容,比如当我们看到script.cfg文件,它虽与界面截图对应,但并非源码,只是记录了用户填写内容的配置信息。
在遍历的输出结果中,我注意到一行标注为"script.uip"的文件。从后缀名判断,这可能是与UI界面相关的。更有趣的是,它包含了一些花括号{ },这提示了我们可能找到了界面源码的线索。
接着,我们面对的是可能存在的乱码问题。按键的乱码可能是加密或编码问题,通过观察问号,猜测是编码错误。编码为utf8的按键支持广泛,我们尝试用转码插件来解决这个问题,以gbk编码为例进行测试,结果出乎意料地顺利。
解决乱码后,我们将调试结果复制到文本中,确认这就是我们寻找的界面源码。将其粘贴回脚本中,界面效果依然保持完好。
但别忘了,包名这一关键信息可能需要用户自行获取。在运行脚本时,可以在界面上找到包名。为了简化操作,我们可以在脚本中直接引入包名,跳过遍历,直接读取界面文件。
至此,我们已经完成了从头到尾的解析过程,代码也变得更加简洁有效。如果你对这些内容感兴趣,不妨试着操作一番,或许会有所收获。
当然,如果你在探索过程中遇到任何问题,或者想要了解更多关于按键精灵的资源,别忘了关注我们的论坛、知乎账号以及微信公众号"按键精灵",那里有更全面的教程和讨论。