1.openpilot-deep-dive源码解析(1)
2.(论文加源码)基于deap的四分类脑电情绪识别(一维CNN+LSTM和一维CNN+GRU
3.序列化推荐中的GRU与Transformer源码解析之一
4.本科生学深度学习一最简单的LSTM讲解,多图展示,源码实践,建议收藏
openpilot-deep-dive源码解析(1)
文章内容涉及openpilot的路径规划,具体解析如下: 首先,导入所需的funtouch os源码数据集、模型、loss函数以及各类公有库,如Comma2kSequenceDataset、MultipleTrajectoryPredictionLoss、SequencePlanningNetwork等。这是进行训练的基础,确保所有工具都已准备好。 接着,对训练参数进行配置,包括dist_sampler_params。关键参数包含:num_replicas:进程数,等于训练时的源码没有 审查元素有世界大小。
rank:当前卡的ID。
persistent_workers:设置为True,确保数据集在被遍历一次后不被销毁,以保持持续使用。
prefetch_factor:设置为2,预装载数据量,默认值是2*num_workers批量大小。
使用DistributedSampler和DataLoader进行数据加载。 模型的构建包括模型本身、优化器、学习率调度器,以及GRU隐状态的初始化。 分布式训练涉及DDP相关代码,实现初始化、训练和销毁。 最后,主训练流程开始,56物流城源码下载参考相关文档或代码进行执行。(论文加源码)基于deap的四分类脑电情绪识别(一维CNN+LSTM和一维CNN+GRU
研究介绍
本文旨在探讨脑电情绪分类方法,并提出使用一维卷积神经网络(CNN-1D)与循环神经网络(RNN)的组合模型,具体实现为GRU和LSTM,解决四分类问题。所用数据集为DEAP,实验结果显示两种模型在分类准确性上表现良好,1DCNN-GRU为.3%,1DCNN-LSTM为.8%。
方法与实验
研究中,数据预处理包含下采样、带通滤波、去除EOG伪影,将数据集分为四个类别:HVHA、HVLA、LVHA、LVLA,tomcat8源码安装基于效价和唤醒值。选取个通道进行处理,提高训练精度,减少验证损失。数据预处理包括z分数标准化与最小-最大缩放,以防止过拟合,提高精度。实验使用名受试者的所有预处理DEAP数据集,以::比例划分训练、验证与测试集。
模型结构
采用1D-CNN与GRU或LSTM的混合模型。1D-CNN包括卷积层、最大池层、GRU或LSTM层、展平层、密集层,最终为4个单元的cocos塔防游戏源码密集层,激活函数为softmax。训练参数分别为.和.。实验结果展示两种模型的准确性和损失值,1DCNN-LSTM模型表现更优。
实验结果与分析
实验结果显示1DCNN-LSTM模型在训练、验证和测试集上的准确率分别为.8%、.9%、.9%,损失分别为6.7%、0.1%、0.1%,显著优于1DCNN-GRU模型。混淆矩阵显示预测值与实际值差异小,F1分数和召回值表明模型质量高。
结论与未来工作
本文提出了一种结合1D-CNN与GRU或LSTM的模型,用于在DEAP数据集上的情绪分类任务。两种模型均能高效地识别四种情绪状态,1DCNN-LSTM表现更优。模型的优点在于简单性,无需大量信号预处理。未来工作将包括在其他数据集上的进一步评估,提高模型鲁棒性,以及实施k-折叠交叉验证以更准确估计性能。
序列化推荐中的GRU与Transformer源码解析之一
GRU4Rec源码(TF版本):github.com/Songweiping/...
Transformer源码:github.com/kang/SASR...
序列化推荐领域中,GRU4Rec成功地将循环神经网络(NLP和时序预测常用)应用至推荐领域,此模型取得了良好效果。紧随其后的是"SASR",基于注意力机制的自适应序列推荐模型,实验表明其性能超越了GRU4Rec。
两篇论文的作者均在源码公开阶段,为研究者提供参考。我们深入剖析源码,后续系列文章将比较GRU4Rec与SASR的差异、联系与优缺点。
GRU4Rec模型结构简洁,采用门限循环神经网络,Embedding层处理item_id的one_hot编码,降低维度,便于优化。
并行化训练数据集优化了模型训练速度,构建了training_batch,便于使用GPU加速矩阵运算。
负采样技术提高了训练频率,利用同一时刻不同session中的item作为负样本。
模型设计了贝叶斯排序和TOP1等pairwise方法计算排序损失,认为pairwise结果优于pointwise。
实验数据集包括RSC和私有VIDEO集,结果表明GRU4Rec模型性能优秀,测试集评价指标包括召回率(recall)和倒序排名得分(mrr)。
深入分析模型的Tensorflow版本代码,主要从main.py和model.py文件开始,重点解析模型定义、损失函数、GRU4Rec核心代码、数据集初始化、模型训练与预测以及评估函数。
GRU4Rec的代码分析暂告一段落,后续将详细梳理SASR代码,目标是通过三篇文章全面探讨两个模型的细节。感谢关注。
本科生学深度学习一最简单的LSTM讲解,多图展示,源码实践,建议收藏
作为本科新手,理解深度学习中的LSTM并非难事。LSTM是一种专为解决RNN长期依赖问题而设计的循环神经网络,它的独特之处在于其结构中的门控单元,包括遗忘门、输入门和输出门,它们共同控制信息的流动和记忆单元的更新。
问题出在RNN的梯度消失和爆炸:当参数过大或过小时,会导致梯度问题。为解决这个问题,LSTM引入了记忆细胞,通过记忆单元和门的协作,限制信息的增减,保持梯度稳定。遗忘门会根据当前输入和前一时刻的输出决定遗忘部分记忆,输入门则控制新信息的添加,输出门则筛选并决定输出哪些记忆。
直观来说,LSTM的网络结构就像一个记忆库,信息通过门的控制在细胞中流动,确保信息的持久性。PyTorch库提供了LSTM模块,通过实例演示,我们可以看到它在实际中的应用效果。虽然LSTM参数多、训练复杂,但在处理长序列问题时效果显著,有时会被更轻量级的GRU所替代。
如果你对LSTM的原理或使用感兴趣,可以参考我的源码示例,或者在我的公众号留言交流。感谢关注和支持,期待下期的GRU讲解。
2024-11-28 16:27343人浏览
2024-11-28 15:282709人浏览
2024-11-28 15:26286人浏览
2024-11-28 15:22236人浏览
2024-11-28 15:14764人浏览
2024-11-28 13:53530人浏览
1.条码设计打印之-ZPL/ZPL-II仿真2.魔改ZXING源码实现商业级DM码检测能力3.Zint,一款免费、开源的条码生成器4.最好用的条码产生器推荐5.想下载个网页带有条形码的 保存了条形码显
中国消费者报沈阳讯(记者 王文郁)记者4月2日获悉,辽宁省丹东市市场监管局为进一步提升市场监管部门信用监管工作效能,指导促进企业守信创业,在总结疫情防控和支持企业复工复产经验做法的基础上,印发了《新办
受午後對流雲系發展旺盛影響,中央氣象署今23)日針對基隆市、台北市、新北市、桃園市、新竹縣、台中市、南投縣、宜蘭縣及花蓮縣發布大雨特報;同時針對「台北市、新北市」發布大雷雨即時訊息,持續時間至15時1