【降噪算法源码】【测速导航源码】【犀牛门户源码】redission 事务源码_redis事务原理

2024-11-28 06:37:20 来源:echarts实例网页源码 分类:探索

1.分布式限流的事事务主流方案有哪些?
2.redis常见面试题汇总
3.Redis 实现分布式锁 +Redisson 源码解析
4.关于redis分布式锁&redis事务结合increment原子操作解决超卖问题的自己思考
5.使用redission的最低redis版本
6.Redis总结(二)

redission 事务源码_redis事务原理

分布式限流的主流方案有哪些?

       大家好,我来分享分布式限流的原理主流方案,解答你对限流的事事务关注。

       为何要限流?流量过多虽好,原理但过载可能导致系统崩溃,事事务因此需对系统进行压测评估,原理降噪算法源码设置限流阈值,事事务避免过载。原理

       限流与熔断有何异同?限流发生在流量进入前,事事务对超出阈值的原理流量进行限制;熔断则在流量进入后,系统发生故障时自动切断请求,事事务防止故障蔓延。原理

       削峰与限流有何区别?削峰是事事务对流量的平滑处理,避免系统瞬间过载,原理而限流则是事事务通过限制流量来保护系统。

       限流通用流程:统计请求量、更新统计信息,然后根据设置的阈值决定是否限制流量。

       单机与分布式限流:单机环境下限流简单,存储本地;分布式环境下,需将统计信息存入分布式存储如Tair或Redis中。

       固定窗口限流算法:设置时间窗口,每个窗口允许的请求次数有限制。窗口期满自动重置计数,实现简单,但存在临界问题。

       滑动窗口限流算法:将大窗口划分为多个小窗口,每个小窗口独立计数,有效缓解临界问题,使限流效果更平滑。

       漏桶算法:模拟水桶出水速率固定,请求以任意速度进入,超过桶容量则丢弃,用于网络流量整形和速度限制。

       令牌桶算法:在漏桶基础上改进,系统以固定速率添加令牌,请求前取令牌,确保流量平滑,避免瞬间过载。

       实现与测试:利用Redis和Redission实现算法,通过Jmeter等工具测试效果,针对不同场景选择最适合的限流策略。

       总结:分布式限流是保护系统免受过载的重要手段,通过固定窗口、滑动窗口、测速导航源码漏桶、令牌桶等算法实现,结合Redis、Redission等工具,实现高效限流。实现时需关注算法特性与系统需求的匹配,以及分布式环境下的协调与性能优化。市面上还有更多优秀的开源限流工具可供选择,持续探索与实践将助你提升系统稳定性。

redis常见面试题汇总

       redis为什么读写速度快?

       redis是一种高性能的 K-V 数据库,官方称单机可支持w/qps。其速度优势主要源于以下几点:

       1. 内存存储:redis将数据存储在内存中,读写操作无需磁盘I/O,这极大地提高了速度。

       2. 数据结构优化:redis支持多种数据结构,如字符串、哈希表、列表、集合、有序集合,这些结构优化了数据操作,提高了效率。

       3. 单线程处理:redis采用单线程模型处理请求,避免了多线程间的上下文切换开销。

       4. 缓存穿透与击穿优化:redis通过过期策略、缓存双删等机制,避免了缓存穿透与缓存击穿的问题,进一步提升了性能。

       redis为什么是单线程?

       redis采用单线程模型,其原因包括:

       1. 避免多线程上下文切换开销:单线程模型避免了多线程间的上下文切换,减少了性能损耗。

       2. 简化代码与维护:单线程模型代码逻辑相对简单,易于理解和维护。

       3. 高性能与稳定性:单线程模型在处理并发请求时,能够保持高性能与系统稳定性。

       redis和memcached的区别?

       1. 数据结构:redis支持多种数据结构,包括字符串、哈希表、列表、集合、有序集合,可以更好地适应不同场景;memcached仅支持键值对。

       2. 存储方式:redis数据可以持久化到磁盘,memcached不支持持久化。犀牛门户源码

       3. 处理模式:redis为单线程处理,memcached为多线程模型。

       4. 高可用性:redis通过主从复制和哨兵机制提供了高可用性,memcached为单节点部署。

       redis的常用数据结构有哪些?

       redis的常用数据结构包括:

       1. string:简单的K-V类型,用于计数、统计等场景。

       2. list:链表结构,适用于消息队列、慢查询等场景。

       3. hash:类似HashMap,适合存储系统对象数据。

       4. set:无序去重集合,适用于存放不能重复的数据。

       5. zset:带有权重的有序集合,适用于直播礼物排行榜等场景。

       6. bitmap:二进制数字存储,适用于状态信息存储。

       redis的持久化机制?

       redis的持久化机制包括:

       1. RDB:Redis DataBase,快照式持久化,以快照文件的形式存储数据状态。

       2. AOF:Append Only File,命令日志式持久化,记录所有写操作命令。

       3. 混合持久化:结合RDB与AOF的优点,文件开头为RDB格式,后续为AOF格式。

       redis过期时间如何设置?如何续期?

       redis可以通过SETEX、EXPIRE等命令设置过期时间,过期后数据自动删除。若需要续期,可使用RENEW命令。

       redis的淘汰策略和过期策略?有什么区别?

       过期策略用于自动删除过期的键,淘汰策略用于在内存不足时决定删除哪些键。过期策略是基于时间的,淘汰策略则是基于内存占用。

       如何保证redis和mysql的数据一致?

       1. 先写MySQL,再删除Redis,保证数据一致性。

       2. 更新数据库+更新缓存,对缓存命中率影响较大。

       3. 双删策略,先删Redis,再写MySQL,discuz net 源码再删Redis。

       4. 监听binlog,将更新操作导入MQ,下游消费后更新缓存。

       缓存常见问题及其解法?

       1. 缓存穿透/击穿:使用双删、时间戳等策略解决。

       2. 缓存雪崩:采用分布式缓存系统,如Redis集群。

       3. 数据不一致:保证读写操作的一致性,使用乐观或悲观锁。

       4. HotKey/热key:采用流量控制、缓存分片等策略。

       5. BigKey:优化key设计,使用分片或压缩技术。

       redis主从复制的原理?作用?

       主从复制通过主节点向从节点异步复制数据,确保数据一致性。作用包括数据冗余、高可用性、负载均衡。

       redis集群是如何保证各节点数据一致的?

       redis集群通过槽分区、一致性哈希算法、主从复制和哨兵机制保证数据一致性。

       redis高可用架构如何实现?

       采用主从模式、哨兵模式或redis cluster集群模式实现高可用。

       redis主节点的key已过期,但从节点依然可以读到,为什么?怎么解决?

       从节点未立即同步过期删除操作。解决方法包括:使用EXPIREAT/PERSIST、设置volatile-ttl、业务逻辑判断key是否过期。

       redis如何实现队列?

       使用列表数据结构的两端操作(LPOP/RPOP)实现队列的FIFO特性。

       lua脚本的执行流程?执行lua脚本,如何保障redis集群数据一致性?

       lua脚本执行包括加载、编译和执行三个阶段。redis集群内部有同步机制,确保数据一致性。

       redission的使用场景

       用于分布式锁、高可用性和高性能需求的场景,如大规模和高可用性应用。

       redis zset的实现原理?

       zset使用zipList和skipList存储结构,zipList适用于小型zset,skipList用于大型zset,以优化查询性能。

       特别大的湖北麻将源码zset,应该如何删除?

       采用分批次删除或使用unlink异步删除策略,避免阻塞。

       什么是redis脑裂?如何解决?

       脑裂是指主从集群中产生两个主节点,导致数据丢失。解决方法包括限制主库请求处理、使用哨兵机制。

Redis 实现分布式锁 +Redisson 源码解析

       在一些场景中,多个进程需要以互斥的方式独占共享资源,这时分布式锁成为了一个非常有用的工具。

       随着互联网技术的快速发展,数据规模在不断扩大,分布式系统变得越来越普遍。一个应用往往会部署在多台机器上(多节点),在某些情况下,为了保证数据不重复,同一任务在同一时刻只能在一个节点上运行,即确保某一方法在同一时刻只能被一个线程执行。在单机环境中,应用是在同一进程下的,仅需通过Java提供的 volatile、ReentrantLock、synchronized 及 concurrent 并发包下的线程安全类等来保证线程安全性。而在多机部署环境中,不同机器不同进程,需要在多进程下保证线程的安全性,因此分布式锁应运而生。

       实现分布式锁的三种主要方式包括:zookeeper、Redis和Redisson。这三种方式都可以实现分布式锁,但基于Redis实现的性能通常会更好,具体选择取决于业务需求。

       本文主要探讨基于Redis实现分布式锁的方案,以及分析对比Redisson的RedissonLock、RedissonRedLock源码。

       为了确保分布式锁的可用性,实现至少需要满足以下四个条件:互斥性、过期自动解锁、请求标识和正确解锁。实现方式通过Redis的set命令加上nx、px参数实现加锁,以及使用Lua脚本进行解锁。实现代码包括加锁和解锁流程,核心实现命令和Lua脚本。这种实现方式的主要优点是能够确保互斥性和自动解锁,但存在单点风险,即如果Redis存储锁对应key的节点挂掉,可能会导致锁丢失,导致多个客户端持有锁的情况。

       Redisson提供了一种更高级的实现方式,实现了分布式可重入锁,包括RedLock算法。Redisson不仅支持单点模式、主从模式、哨兵模式和集群模式,还提供了一系列分布式的Java常用对象和锁实现,如可重入锁、公平锁、联锁、读写锁等。Redisson的使用方法简单,旨在分离对Redis的关注,让开发者更专注于业务逻辑。

       通过Redisson实现分布式锁,相比于纯Redis实现,有更完善的特性,如可重入锁、失败重试、最大等待时间设置等。同时,RedissonLock同样面临节点挂掉时可能丢失锁的风险。为了解决这个问题,Redisson提供了实现了RedLock算法的RedissonRedLock,能够真正解决单点故障的问题,但需要额外为RedissonRedLock搭建Redis环境。

       如果业务场景可以容忍这种小概率的错误,推荐使用RedissonLock。如果无法容忍,推荐使用RedissonRedLock。此外,RedLock算法假设存在N个独立的Redis master节点,并确保在N个实例上获取和释放锁,以提高分布式系统中的可靠性。

       在实现分布式锁时,还需要注意到实现RedLock算法所需的Redission节点的搭建,这些节点既可以是单机模式、主从模式、哨兵模式或集群模式,以确保在任一节点挂掉时仍能保持分布式锁的可用性。

       在使用Redisson实现分布式锁时,通过RedissonMultiLock尝试获取和释放锁的核心代码,为实现RedLock算法提供了支持。

关于redis分布式锁&redis事务结合increment原子操作解决超卖问题的自己思考

       关于解决商品超卖问题,老师分享了两种策略:一是利用Redis分布式锁(如Redission)进行并发控制,二是结合Redis事务和increment原子操作直接在数据库层面操作库存。这两种方法旨在防止库存超卖、重复调用数据接口以及处理消息的可靠性问题。

       当用户通过门户请求添加商品至购物车,再到结算阶段选择地址生成订单时,系统首先生成订单ID,使用Redis事务预扣减库存并删除购物车记录,同时将订单放入延迟队列。若订单在规定时间内未支付,会自动取消并释放库存;若支付成功,则更新库存状态并进入物流流程。然而,这个过程中需面对挑战,如并发问题、数据库自增长ID的局限、分布式锁的执行效率和消息丢失或重复消费等。

       在老师的指导下,我逐步理解到编程远非CRUD那么简单,它需要深入思考并发控制、数据一致性以及系统的健壮性。通过这次学习,我意识到之前自学时未能触及的复杂性,这两个月即将毕业,我期待能将这些知识应用到实际工作中,找到满意的工作机会。

       最后,我遇到一个疑惑,导入Redission依赖后,原本的缓存注解失效了,这成为我需要解决的新问题。这再次提醒我,技术学习中的挑战总是接踵而至。

使用redission的最低redis版本

       Redission是一款专为Java设计的Redis客户端,它巧妙地融合了Redis的分布式缓存和消息代理功能,以实现高效和无锁的并发操作。选择使用Redission时,一个重要的考量因素是与之兼容的Redis最低版本。

       查阅官方文档GitHub上的redisson/redisson项目(最新版本为redisson-3..0),可以了解到Redission的兼容性要求。它支持广泛的Java版本,包括1.8到,以及Android平台。这意味着用户可以根据自身的开发环境和技术栈选择合适的JDK支持。

       对于Redis服务器,Redission支持的最低版本是从3.0开始,直到7.0。这意味着如果你正在考虑使用Redission,确保你的Redis服务器版本在3.0至7.0之间,这样才能保证Redission和Redis服务器的顺利集成和功能发挥。

Redis总结(二)

       总结 Redis 使用策略与技巧,以解决常见缓存问题。首先,缓存穿透问题,当客户端请求的数据在数据库和 Redis 缓存中均不存在时,若频繁发生,数据库将承受巨大压力。解决方法是建立数据失效策略,确保数据更新时能同步至缓存,避免重复请求数据库。

       接着,缓存雪崩和缓存击穿现象需引起注意。缓存雪崩发生于大量 key 同时过期,导致所有请求直接转向数据库,加重其负担。缓存击穿则是因热点 key 突然失效,大量请求同时访问数据库,引发性能瓶颈。解决策略是利用分布式锁机制,如 Redis 的 setnx 命令,实现锁的获取与释放,以及设置超时机制,以避免锁超时误删问题。

       优化缓存击穿的解决方案是通过在缓存失效逻辑中加入剩余量判断,如商品库存剩余情况,避免同时查询数据库。同时,使用乐观锁策略,通过检查版本号一致来避免并发冲突,提高系统稳定性。

       在实现一人一单逻辑时,检查订单号与用户ID的关联,以确认用户是否已购买,此过程需使用悲观锁,通过 @Synchronized 注解来确保数据一致性。

       分布式环境下,集群问题需特别关注。使用如 Redission 这类库,提供分布式锁解决方案,通过底层实现的 Lua 脚本,确保锁的获取、释放等操作的原子性,避免因超时导致的误删问题。Redission 解决了分布式环境下的锁问题,提供高效、稳定的锁机制。

       在配置 Redission 时,通过指定锁名称、锁失效时间及锁的小key,实现锁的生命周期管理。底层使用 Lua 脚本,确保在获取锁时,判断剩余等待时间是否完成,以避免锁的误操作。

       使用 ConcurrentHashMap 实现线程安全的锁管理,通过检查当前 entry 的存在与否,来判断是否加入新的锁信息,且每次操作都会更新线程 ID,确保锁的唯一性。在每次获取锁时,通过检查 oldEntry 的状态,来判断是首次访问还是重复访问,从而实现锁的重试机制。

       总结而言,通过合理配置及策略实施,可以有效解决 Redis 使用中的缓存问题,提升系统性能和稳定性。同时,结合分布式锁机制,确保在分布式环境下数据操作的一致性和安全性。

Spring - starter机制

       Spring starter 是 SpringBoot 的核心组件,它能简化开发过程,提供可插拔式的插件,无需繁琐的配置即可使用其功能。

       实现原理基于两个关键步骤:引入 maven 依赖和配置文件。引入 maven 是为了导入 jar 包,SpringBoot 启动时会读取 jar 包内的 resources/META-INF/spring.factories 文件,根据文件中的配置信息自动寻找需要配置的类。

       在创建 SpringBoot 程序时,通常在启动类中生成一个入口函数并添加 @SpringBootApplication 注解,该注解包含 @EnableAutoConfiguration,用于自动扫描 jar 包内的配置。

       进入 @EnableAutoConfiguration,会发现它使用了 @Import(AutoConfigurationImportSelector.class) 注解,该注解将包含 @Configuration 注解的配置类装配至程序中。

       以红绿灯管理器的 Redission-spring-boot-starter 为例,其结构如下:

       1. pom.properties:配置 Maven 必需的项目版本、groupId 和 artifactId。

       2. pom.xml:配置依赖的 jar 包。

       3. MANIFEST.MF:记录 jar 文件的基本信息。

       4. spring.factories:配置需要自动装配的类信息。

       5. spring.provides:配置所依赖的 artifactId,为 IDE 提供信息,无其他作用。

       6. RedissonAutoConfiguration:是自动配置类,主要负责 Redis 连接操作,包含辅助性注解,决定 @Configuration 注解的生效场景及顺序。

       主要辅助注解包括:

       1. RedissonProperties:属性实体类,将 yml 或 properties 配置文件转化为 bean,设置了前缀,方便在项目的 application.properties 配置文件中提示相关 bean 实例属性。

       2. RedissonAutoConfigurationCustomizer:实现自定义 RedissonClient 的自动配置。

       通过引入 Redission-spring-boot-starter,自动引入 Redis 连接模块,只需在 yml 或 properties 文件中配置基本参数,Spring 自动装配,完成连接功能。

       自定义 starter 的方法参考 starter 的实现原理,建议命名为 *-spring-boot-starter。此过程需遵循特定规范,确保自定义 starter 可以无缝集成至 SpringBoot 环境。

更多资讯请点击:探索

推荐资讯

iozone 源码下载

1.iozone安装iozone安装 在进行iozone的安装过程中,首先你需要从iozone的官方网站获取最新的源码包。这可以通过执行以下命令来完成: 下载iozone的最新版本: &l

泉州中山路综合提升工程:“快工”也能出细活

匠心修 用心建 细心做 中山路综合提升工程:“快工”也能出细活周边学校组织学生参观中山路施工段围挡上的绘画作品都说慢工出细活,但是在市区中山路综合提升工程建设过程中,城市领导者

巴基斯坦官員:武裝分子打死至少23名客車乘客

新華社快訊:巴基斯坦官員26日說,武裝分子在該國西南部俾路支省的公路上打死至少23名客車乘客。責任編輯: 梁存希