1.探索Android开源框架 - 8. Gson使用及源码解析
2.JSF源码分析(一)
3.Gin源码分析 - 中间件(5)- Recovery
4.ZookeeperApach Curator 框架源码分析:初始化过程(一)Ver 4.3.0
5.Thrift入门 | Thrift框架分析(源码角度)
6.Tars-Java网络编程源码分析
探索Android开源框架 - 8. Gson使用及源码解析
深入解析Android开源框架中的源码Gson使用及其源码解析,Gson作为Java语言的分析高效JSON转换库,以其简洁的框架API和高性能的特点,成为Android开发中进行数据序列化和反序列化的源码首选工具。本文将详细介绍Gson的分析使用方法,包括基本的框架druple源码分析解析与生成、属性重命名、源码POJO与JSON的分析字段映射规则、泛型的框架封装、序列化与反序列化过程,源码以及如何进行字段过滤与自定义序列化器和反序列化器的分析实现。
1. **基本的框架解析与生成
**使用Gson进行JSON字符串解析时,可以通过Gson对象的源码fromJson方法将JSON字符串转换为Java对象,反之,分析使用toJson方法将Java对象转换为JSON字符串。框架
2. **属性重命名
**通过使用@SerializedName注解,可以方便地在POJO类中重命名JSON字段,以匹配服务端返回的数据结构,从而避免硬编码的字符串匹配。
3. **POJO与JSON的字段映射规则
**Gson通过构建一个映射规则来匹配JSON字段到POJO类的属性,确保数据的正确解析与生成。这主要通过类型适配器(TypeAdapter)来实现,使得Gson能够理解如何处理复杂数据类型,如日期、集合等。
4. **泛型的封装
**在使用Gson进行序列化和反序列化时,可以通过泛型来保证类型安全,确保不会出现类型转换错误。GsonBuilder提供了一系列方法来实现泛型的封装,使得API调用更为清晰和明确。
5. **Gson的序列化、反序列化
**通过Gson的API,可以轻松实现Java对象到JSON字符串的序列化,以及从JSON字符串反序列化到Java对象的过程。这使得数据在不同系统间传输变得简单高效。
6. **字段过滤
**提供了多种方法进行字段过滤,如使用@Expose注解、基于版本的过滤、访问修饰符、以及基于策略的自定义过滤规则,以满足不同的数据处理需求。
7. **TypeAdapter、JsonSerializer与JsonDeserializer
**实战中,可能需要处理一些特殊的数据类型或复杂逻辑,这时可以通过实现JsonSerializer或JsonDeserializer来自定义序列化和反序列化过程。TypeAdapter则可以用于处理复杂类型的序列化。
8. **实战TypeAdapterFactory
**在某些场景下,可以通过实现TypeAdapterFactory来创建自定义的TypeAdapter,从而实现更为灵活的云海计费源码数据处理逻辑。
9. **@JsonAdapter注解
**用于指定自定义的序列化器或反序列化器,简化了实现自定义序列化逻辑的步骤,使得代码更为简洁和易读。
. **源码解析
**通过深入源码分析,可以更好地理解Gson内部的实现机制,如fromJson方法如何获取适配器、getAdapter方法如何选择适配器、Gson的构造方法如何初始化适配器列表,以及如何通过反射机制创建绑定字段等关键逻辑。这不仅有助于解决实际开发中的问题,还能加深对Gson工作的理解,为后续的优化和定制提供基础。
JSF源码分析(一)
在深入分析 JSF 框架的源码时,我们首先关注的是核心的功能模块,以帮助我们理解其工作原理。通常,我们从常见的项目 XML 配置文件入手,这些文件包含了 JSF 框架的基本设置。让我们以地址服务的 jsf-provider.xml 文件为例,进行详细的解析。
在 JSF 的配置文件中,虽然没有直接显示注册中心的内容,但作为自研的高性能 RPC 调用框架,高可用的注册中心是其核心功能之一。因此,我们接下来将探索如何在没有提供注册中心地址的情况下,这些标签是如何完成服务的注册和订阅的。
### 配置解析
首先,我们发现配置文件中自定义的 xsd 文件,通过 NamespaceUri 链接到 jsf.jd.com/schema/jsf/j...。随后,基于 SPI(Service Provider Interface)机制,我们在 META-INF 中找到了定义好的 Spring.handlers 文件和 Spring.schemas 文件,这两个文件分别用于配置解析器和 xsd 文件的具体路径。
进一步地,我们查询了继承自 NamespaceHandlerSupport 或实现 NamespaceHandler 接口的类。在 JSF 框架中,JSFNamespaceHandler 通过继承 NamespaceHandlerSupport 实现了对自定义命名空间的解析功能。NamespaceHandler 的主要作用是解析我们自定义的 JSF 命名空间,通过 BeanDefinitionParser 对特定标签进行处理,完成对 XML 中配置信息的具体处理。
### 服务暴露
最终,通过 JSFBeanDefinitionParser 实现了 org.springframework.beans.factory.xml.BeanDefinitionParser,完成 XML 配置的解析。解析的结果会注册到 BeanDefinitionRegistry 对象中,进而触发 Bean 的初始化过程。最终,ProviderBean 实例监听上下文事件,源码怎么部署在容器初始化完毕后,调用 export() 方法进行服务的暴露。
### 服务注册与暴露
服务暴露的实现逻辑集中在 ProviderConfig#doExport 方法中。首先,方法会对配置进行基本校验和拦截。随后,获取所有 RegistryConfig,如果获取不到注册中心地址,将使用默认的注册中心地址:“i.jsf.jd.com”。接着,根据 Provider 配置中的 server 相关信息启动 server,并使用默认序列化方式(如 msgpack)进行服务编码。然后,通过 ServerFactory 初始化并启动 Server,调用 ServerTransportFactory 生成对应的传输层,实现与注册中心的通信。最后,服务注册通过 JSFRegistry 类完成,该类连接注册中心,如果没有可用的中心,则使用本地文件并开启守护线程,使用两个线程池进行心跳检测、重试机制和连接状态监控。至此,服务从配置装配到服务暴露的过程完成。
### 消费者配置与初始化
对于消费者端(jsf-consumer.xml),注册中心地址(如“i.jsf.jd.com”)被配置在其中,而 Provider 的配置则在 jsf-provider.xml 中。配置解析过程与 Provider 类似,最终解析为 ConsumerConfig 和 RegistryConfig。通过 ConsumerBean 类实现 FactoryBean 接口,以便通过 getObject() 方法获取代理对象,完成客户端的初始化。在这个过程中,消费者会根据配置订阅相关的 Provider 服务。核心代码在 ConsumerConfig#refer 方法中,该方法通过调用子类的 subscribe() 方法开始订阅过程,连接 Provider 服务。
### 框架流程概述
综上所述,JSF 框架通过 Provider、Consumer 和注册中心(Registry)之间的协同工作,实现了高效的服务注册、订阅和通信。具体流程包括:
1. **Provider 端**:启动服务向注册中心注册,并根据配置初始化相关组件。
2. **Consumer 端**:首次获取实体信息时,通过 FactoryBean 接口获取代理对象,完成初始化并订阅 Provider 服务。python ddos源码
3. **注册中心**:提供异步通知机制,监控服务状态变化。
4. **服务调用**:直接调用服务方法。
5. **监控与治理**:框架内置监控机制,支持服务治理和降级容灾策略。
了解这一过程对于深入理解 JSF 框架的内部机制至关重要,也为后续的模块分析和系统优化提供了基础。
Gin源码分析 - 中间件(5)- Recovery
Recovery中间件在HTTP请求处理中扮演着关键角色,尤其在处理过程中产生panic时。它能够捕获并处理这些异常,确保服务的稳定性和客户端的正常响应。通过使用gin框架,可以通过两种方式集成Recovery中间件:第一种是直接调用gin.New创建引擎时,无需注册Recovery中间件;第二种是在调用gin.Default()创建引擎时,内部自动注册Recovery中间件。在没有使用Recovery中间件的情况下,向服务发送异常请求会导致服务端和客户端出现异常;而使用Recovery中间件后,异常被捕获并以友好的方式显示异常堆栈,同时客户端收到HTTP 错误。
Recovery中间件内部实现通过多种变体接口实现,包括CustomRecoveryWithWriter、RecoveryWithWriter、CustomRecovery以及Recovery。其中,CustomRecoveryWithWriter提供最底层的形式,允许用户自定义异常输出和恢复处理逻辑。RecoveryWithWriter则提供了Writer参数和一个可选的RecoveryFunc,如果没有定义该函数,则使用defaultHandleRecovery。CustomRecovery和Recovery则分别使用默认的DefaultErrorWriter和defaultHandleRecovery。
Recovery的核心实现通过DefaultErrorWriter和defaultHandleRecovery两个主要部分。DefaultErrorWriter负责设置日志格式为红色字体输出。defaultHandleRecovery方法是整个处理流程的核心,包含捕获、处理异常、生成响应等关键步骤。首先通过recover()方法获取panic信息,判断异常是否由客户端断开连接引起,然后获取异常堆栈、请求头,并根据异常类型和原因进行相应的处理和响应输出。最终,根据处理结果返回HTTP响应,如果是异常则返回HTTP ,如果是网络原因则使用Abort方法。
Recovery中间件的实现不仅提供了异常处理的灵活性,还确保了服务的稳定性和客户端的友好体验。通过捕获和处理异常,公文写作源码Recovery中间件能够有效地减少服务中断的可能性,提高系统的健壮性。总结而言,Recovery中间件在处理异常时提供了实用的方法,对于开发稳定、可靠的HTTP服务具有重要意义。
ZookeeperApach Curator 框架源码分析:初始化过程(一)Ver 4.3.0
Curator是由Netflix开源的一款用于简化Zookeeper客户端开发的工具,它提供了一套高级别API,使得开发者可以更简单易懂地实现分布式应用程序。Curator构建在Zookeeper原生客户端之上,提供了连接重试、异常处理、节点监听等常见功能,减轻了开发者的工作负担。Curator由多个模块组成,其中curator-framework和curator-recipes是最常用的部分,此外还提供了分布式锁等功能。
Curator的最新版本为5.X系列,不再支持ZK 3.4.X及之前的版本。主要的改动在5.X系列中,原因包括代码重构、API调整等,导致不兼容之前的版本。
Curator的下载地址可以通过Maven依赖管理或Apache官方网站获取。要开始使用Curator,需要搭建Zookeeper集群环境,详细部署过程可参考其他文章。
引入Curator依赖后,开发者可以使用CuratorFrameworkFactory构建实例,通过此实例连接Zookeeper集群并执行分布式操作,如分布式锁等。Curator内部实现了重试策略、连接管理等,使得操作更为便捷且稳定。
Curator提供了可重入锁(公平锁)的示例,开发者可以通过简单的代码实现分布式锁功能。初始化CuratorFramework实例的过程包括设置连接参数、构建实例、启动连接等步骤,内部会处理网络重连、异常处理等逻辑。
在Curator的初始化过程中,CuratorFrameworkImpl是核心类,它负责构建与Zookeeper集群的连接,并封装了一系列关键组件,如连接管理、异常检测、负载均衡等。CuratorZookeeperClient类负责Zookeeper客户端的封装和调用。
CuratorFrameworkImpl的启动过程涉及初始化连接状态管理器、启动客户端连接、执行后台操作等关键步骤。通过CAS操作确保线程安全,并在异常情况下自动重试连接。
连接状态管理器(ConnectionStateManager)负责维护连接状态并处理状态变更通知,确保在状态改变时能够及时通知到监听器。通知机制包括注册一次性监听器、注册CuratorListener和ConnectionStateListener,以及处理未处理的错误。
Curator的会话管理机制包括连接状态检查和重连策略,确保在连接断开后能够自动恢复连接。在状态变更时,连接状态管理器会通知所有注册的监听器,执行相应的回调逻辑。
Curator还提供了缓存机制,用于保存节点数据并在数据发生变化时进行更新。此外,Curator支持多次注册监听器,确保在连接断开后能够重新注册监听器,以避免丢失监听事件。
通过上述分析,Curator为开发者提供了高效、稳定的Zookeeper客户端实现,简化了分布式应用程序的开发过程。在实际应用中,开发者需要根据项目需求选择合适的版本和功能模块,以充分利用Curator提供的便利性。
Thrift入门 | Thrift框架分析(源码角度)
深入理解Thrift框架,首先需要掌握其基本概念。Thrift是一个用于跨语言通信的框架,其设计初衷是提高开发效率和简化多语言环境下的服务调用。以下是Thrift框架的核心组成部分及其功能概述。 Thrift框架主要包括两个层:Protocol层和Transport层。Protocol层主要负责数据的序列化和反序列化,而Transport层则负责数据流的传输。Protocol层中包含多种序列化协议,常见的有Compact、Binary、JSON等,它们都继承自TProtocol基类,提供读写抽象操作。 以TBinaryProtocol为例,它是一种基于二进制的序列化协议。序列化过程主要包括以下几个关键步骤:writeMessageBegin:用于序列化message的开始部分,包括thrift版本、message名称和seqid等信息。
writeFieldStop:在所有字段序列化完成后,写入T_STOP标识符,表示序列化结束。
writeI、writeString、writeBinary:分别用于序列化整型、字符串和二进制数据。
在读取操作中,这些write操作的逆操作被执行,以实现反序列化。Protocol层的实现细节主要体现在读写函数的调用和抽象上。 Transport层负责数据的实际传输,它提供了一系列抽象方法,如isOpen、open、close、read和write等,用于管理底层连接的打开、关闭和数据读写。常见的Transport层协议包括TFramedTransport和TSocket。TFramedTransport通过缓冲区管理,实现了数据的分帧传输,而TSocket则基于原始的socket实现网络通信。 为了进一步提高性能,Transport层可能包含缓存和压缩等功能,以优化数据传输效率。Thrift中,TSocket作为底层传输层,负责与原始socket交互,而TFramedTransport等上层Transport则在TSocket的基础上进行扩展,实现数据的高效传输。 总结,Thrift框架通过其Protocol层和Transport层,实现了跨语言、高效的数据传输。深入理解这些组件及其工作原理,对于开发和优化基于Thrift的分布式系统具有重要意义。Tars-Java网络编程源码分析
Tars框架基本介绍
Tars是腾讯开源的高性能RPC框架,支持多种语言,包括C++、Java、PHP、Nodejs、Go等。它提供了一整套解决方案,帮助开发者快速构建稳定可靠的分布式应用,并实现服务治理。
Tars部署服务节点超过一千个,经过线上每日一百多亿消息推送量的考验。文章将从Java NIO网络编程原理和Tars使用NIO进行网络编程的细节两方面进行深入探讨。
Java NIO原理介绍
Java NIO提供了新的IO处理方式,它是面向缓冲区而不是字节流,且是非阻塞的,支持IO多路复用。
Channel类型包括SocketChannel和ServerSocketChannel。ServerSocketChannel接受新连接,accept()方法会返回新连接的SocketChannel。Buffer类型用于数据读写,分配、读写、操作等。
Selector用于监听多个通道的事件,单个线程可以监听多个数据通道。
Tars NIO网络编程
Tars采用多reactor多线程模型,核心类之间的关系明确。Java NIO服务端开发流程包括创建ServerSocketChannel、Selector、注册事件、循环处理IO事件等。
Tars客户端发起请求流程包括创建通信器、工厂方法创建代理、初始化ServantClient、获取SelectorManager等。
Tars服务端启动步骤包括初始化selectorManager、开启监听的ServerSocketChannel、选择reactor线程处理事件等。
Reactor线程启动流程涉及多路复用器轮询检查事件、处理注册队列、获取已选键集中就绪的channel、更新Session、分发IO事件处理、处理注销队列等。
IO事件分发处理涉及TCP和UDPAccepter处理不同事件,以及session中网络读写的详细处理过程。
总结
文章详细介绍了Java NIO编程原理和Tars-Java 1.7.2版本网络编程模块源码实现。最新的Tars-Java master分支已将网络编程改用Netty,学习NIO原理对掌握网络编程至关重要。
了解更多关于Tars框架的介绍,请访问tarscloud.org。本文源码分析地址在github.com/TarsCloud/Ta...
Yii2源码分析——应用是如何启动及其生命周期
Yii2是一个广泛使用的Web编程框架,旨在构建各种基于PHP的Web应用。通常,Web应用通过入口文件启动,无论是Web应用入口还是命令行入口,核心都是先初始化应用类,最终由run方法启动整个Yii2应用流程。
运行方法清晰地展示了整个Web应用框架的生命周期。应用状态标志用于在执行对应状态时触发处理函数,直至响应完成,结束整个应用流程。其中,trigger方法体现了框架中的事件概念,而getRequest方法体现了组件概念,这一概念对控制反转这一思路的实现尤为关键,后续会深入探讨。
在运行方法的代码中,可以看到Yii2关键核心概念的良好体现。通过返回应用主体的继承关系,我们了解到了基类的作用。例如,Configurable类定义为接口,Yii2在实例化对象时不使用new关键字,而是依赖注入容器(DI Container)获取对象。Configurable接口表示实现它的类必须遵循一定的约定,可以通过配置数组实例化和初始化对象。配置格式类似自定义组件配置方式。实现这种配置方式的关键在于BaseObject类,它是Yii2对象的基础类,提供了属性支持。
成员变量与属性的区别与联系在于:成员变量反映类的结构构成,属性反映类的逻辑意义;成员变量无读写权限控制,属性可设置为只读或只写;成员变量不进行读取后处理,属性则可以。更多关于成员变量和属性的探讨,有兴趣的读者可以继续研究。
组件(Component)与基类BaseObject最大的区别在于支持行为,行为允许在不改变类继承关系的情况下增强组件功能。行为通过组件响应事件,自定义或调整组件正常执行的代码。通过对比BaseObject和Component的魔术方法实现,可以了解行为的核心。
服务定位器(ServiceLocator)是用于快速查找并定位服务的容器,位于vendor/yiisoft/yii2/di文件夹下。通过注册服务并访问服务实例,可以实现对服务的管理。ServiceLocator有两个属性:_components和_definitions,分别用于存储服务实例和服务定义。
Module类位于base目录下,是基础类之一。可以将Module理解为一个子应用程序,如debug、gii等独立模块。模块由模型、视图、控制器和其他支持组件组成,终端用户可以访问已安装在主应用中的模块控制器。
在Module类中,runAction方法非常重要,实现了根据路由访问调用相应控制器类,从而处理和响应请求。最后,我们看到yii\web\Application类继承自yii\base\Application抽象类,而yii\base\Application继承自Module类。yii\web\Application的主要功能是定义核心组件加载位置和实现handleRequest方法,这一方法在启动应用流程中起关键作用。通过分析handleRequest,可以发现响应请求的核心在于调用Module类中的runAction方法。
至此,我们对Yii2框架的生命周期和关键概念有了基本的讲解与分析。接下来的文章将深入探讨Yii2的基本概念的核心实现以及设计原则和设计思想的应用。
Gin源码分析 - 中间件(3)- Logger
本文深入剖析Gin框架内置中间件Logger,详细阐述其四种创建形式。基本形式以默认配置输出日志至标准输出。自定义格式器形式允许用户调整日志输出格式。指定输出流形式则灵活地将日志输出至特定写入器,同时可忽略指定路径的日志。复杂配置形式提供高度定制化,是创建中间件的高级手段。深入探讨LoggerConfig结构体,解析其三个关键属性:日志格式、输出器和忽略路径。LogFormatter方法实现日志的格式化,包含辅助函数进行颜色调整,如根据HTTP响应码和请求类型设置显示颜色。defaultLogFormatter方法提供默认的日志格式化操作。详细解析LoggerWithConfig方法,该方法获取配置参数并判断输出环境,随后将忽略路径保存为映射,记录过滤的路径。计算处理时间和构建日志字符串,输出至指定写入器。