【淘宝登陆源码】【彩开奖源码】【座位图源码】结巴分词 源码解析四_结巴分词官网

时间:2024-11-26 10:29:20 来源:源码开发外包需要给源码吗 分类:娱乐

1.��ͷִ� Դ�������
2.Python 结巴分词(jieba)源码分析

结巴分词 源码解析四_结巴分词官网

��ͷִ� Դ�������

       项目内容

       案例选择商品类目:沙发;数量:共页个商品;筛选条件:天猫、结巴解析结巴销量从高到低、分词分词价格元以上。源码

       以下是官网分析,源码点击文末链接

       项目目的结巴解析结巴

       1. 对商品标题进行文本分析,词云可视化。分词分词淘宝登陆源码

       2. 不同关键词word对应的源码sales统计分析。

       3. 商品的官网价格分布情况分析。

       4. 商品的结巴解析结巴销量分布情况分析。

       5. 不同价格区间的分词分词商品的平均销量分布。

       6. 商品价格对销量的源码影响分析。

       7. 商品价格对销售额的官网影响分析。

       8. 不同省份或城市的结巴解析结巴商品数量分布。

       9. 不同省份的分词分词商品平均销量分布。

       注:本项目仅以以上几项分析为例。源码

       项目步骤

       1. 数据采集:Python爬取淘宝网商品数据。

       2. 数据清洗和处理。

       3. 文本分析:jieba分词、wordcloud可视化。

       4. 数据柱形图可视化barh。彩开奖源码

       5. 数据直方图可视化hist。

       6. 数据散点图可视化scatter。

       7. 数据回归分析可视化regplot。

       工具&模块:

       工具:本案例代码编辑工具Anaconda的Spyder。

       模块:requests、retrying、missingno、jieba、matplotlib、wordcloud、imread、seaborn等。

       原代码和相关文档后台回复“淘宝”下载。

       一、爬取数据

       因淘宝网是反爬虫的,虽然使用多线程、修改headers参数,但仍然不能保证每次%爬取,所以,座位图源码我增加了循环爬取,直至所有页爬取成功停止。

       说明:淘宝商品页为JSON格式,这里使用正则表达式进行解析。

       代码如下:

       二、数据清洗、处理:

       (此步骤也可以在Excel中完成,再读入数据)

       代码如下:

       说明:根据需求,本案例中只取了item_loc、raw_title、view_price、view_sales这4列数据,主要对标题、区域、价格、销量进行分析。

       代码如下:

       三、数据挖掘与分析:

       1. 对raw_title列标题进行文本分析:

       使用结巴分词器,安装模块pip install jieba。i人事源码

       对title_s(list of list格式)中的每个list的元素(str)进行过滤,剔除不需要的词语,即把停用词表stopwords中有的词语都剔除掉:

       为了准确性,这里对过滤后的数据title_clean中的每个list的元素进行去重,即每个标题被分割后的词语唯一。

       观察word_count表中的词语,发现jieba默认的词典无法满足需求。

       有的词语(如可拆洗、不可拆洗等)却被cut,这里根据需求对词典加入新词(也可以直接在词典dict.txt里面增删,然后载入修改过的dict.txt)。

       词云可视化:

       安装模块wordcloud。

       方法1:pip install wordcloud。

       方法2:下载Packages安装:pip install 软件包名称。

       软件包下载地址:lfd.uci.edu/~gohlke/pyt...

       注意:要把下载的软件包放在Python安装路径下。

       代码如下:

       分析

       1. 组合、整装商品占比很高;

       2. 从沙发材质看:布艺沙发占比很高,比皮艺沙发多;

       3. 从沙发风格看:简约风格最多,北欧风次之,全民源码网其他风格排名依次是美式、中式、日式、法式等;

       4. 从户型看:小户型占比最高、大小户型次之,大户型最少。

       2. 不同关键词word对应的sales之和的统计分析:

       (说明:例如词语‘简约’,则统计商品标题中含有‘简约’一词的商品的销量之和,即求出具有‘简约’风格的商品销量之和)

       代码如下:

       对表df_word_sum中的word和w_s_sum两列数据进行可视化。

       (本例中取销量排名前的词语进行绘图)

       由图表可知:

       1. 组合商品销量最高;

       2. 从品类看:布艺沙发销量很高,远超过皮艺沙发;

       3. 从户型看:小户型沙发销量最高,大小户型次之,大户型销量最少;

       4. 从风格看:简约风销量最高,北欧风次之,其他依次是中式、美式、日式等;

       5. 可拆洗、转角类沙发销量可观,也是颇受消费者青睐的。

       3. 商品的价格分布情况分析:

       分析发现,有一些值太大,为了使可视化效果更加直观,这里我们选择价格小于的商品。

       代码如下:

       由图表可知:

       1. 商品数量随着价格总体呈现下降阶梯形势,价格越高,在售的商品越少;

       2. 低价位商品居多,价格在-之间的商品最多,-之间的次之,价格1万以上的商品较少;

       3. 价格1万元以上的商品,在售商品数量差异不大。

       4. 商品的销量分布情况分析:

       同样,为了使可视化效果更加直观,这里我们选择销量大于的商品。

       代码如下:

       由图表及数据可知:

       1. 销量以上的商品仅占3.4%,其中销量-之间的商品最多,-之间的次之;

       2. 销量-之间,商品的数量随着销量呈现下降趋势,且趋势陡峭,低销量商品居多;

       3. 销量以上的商品很少。

       5. 不同价格区间的商品的平均销量分布:

       代码如下:

       由图表可知:

       1. 价格在-之间的商品平均销量最高,-之间的次之,元以上的最低;

       2. 总体呈现先增后减的趋势,但最高峰处于相对低价位阶段;

       3. 说明广大消费者对购买沙发的需求更多处于低价位阶段,在元以上价位越高平均销量基本是越少。

       6. 商品价格对销量的影响分析:

       同上,为了使可视化效果更加直观,这里我们选择价格小于的商品。

       代码如下:

       由图表可知:

       1. 总体趋势:随着商品价格增多其销量减少,商品价格对其销量影响很大;

       2. 价格-之间的少数商品销量冲的很高,价格-之间的商品多数销量偏低,少数相对较高,但价格以上的商品销量均很低,没有销量突出的商品。

       7. 商品价格对销售额的影响分析:

       代码如下:

       由图表可知:

       1. 总体趋势:由线性回归拟合线可以看出,商品销售额随着价格增长呈现上升趋势;

       2. 多数商品的价格偏低,销售额也偏低;

       3. 价格在0-的商品只有少数销售额较高,价格2万-6万的商品只有3个销售额较高,价格6-万的商品有1个销售额很高,而且是最大值。

       8. 不同省份的商品数量分布:

       代码如下:

       由图表可知:

       1. 广东的最多,上海次之,江苏第三,尤其是广东的数量远超过江苏、浙江、上海等地,说明在沙发这个子类目,广东的店铺占主导地位;

       2. 江浙沪等地的数量差异不大,基本相当。

       9. 不同省份的商品平均销量分布:

       代码如下:

       热力型地图

       源码:Python爬取淘宝商品数据挖掘分析实战

Python 结巴分词(jieba)源码分析

       本文深入分析Python结巴分词(jieba)的源码,旨在揭示其算法实现细节与设计思路,以期对自然语言处理领域感兴趣的朋友提供有价值的参考。经过两周的细致研究,作者整理了分词算法、实现方案及关键文件结构的解析,以供读者深入理解结巴分词的底层逻辑。

       首先,分词算法涉及的核心技术包括基于Trie树结构的高效词图扫描、动态规划查找最大概率路径和基于HMM模型的未登录词处理。Trie树用于生成句子中所有可能成词情况的有向无环图(DAG),动态规划则帮助在词频基础上寻找到最优切分组合,而HMM模型则通过Viterbi算法处理未在词库中出现的词语,确保分词的准确性和全面性。

       在结巴分词的文件结构中,作者详细介绍了各个关键文件的功能与内容。dict.txt作为词库,记录着词频与词性信息;__init__.py则是核心功能的入口,提供了分词接口cut,支持全模式、精确模式以及结合最大概率路径与HMM模型的综合模式。全模式下,会生成所有可能的词组合;精确模式通过最大概率路径确定最优分词;综合模式则同时考虑概率与未登录词,以提高分词效果。

       实现细节方面,文章通过实例代码解释了全模式、精确模式及综合模式的分词逻辑。全模式直接输出所有词组合;精确模式基于词频和最大概率路径策略,高效识别最优分词;综合模式利用HMM模型处理未登录词,进一步提升分词准确度。通过生成的DAG图,直观展示了分词过程。

       结巴分词的代码实现简洁而高效,通过巧妙的算法设计和数据结构应用,展示了自然语言处理技术在实际应用中的强大能力。通过对分词算法的深入解析,不仅有助于理解结巴分词的功能实现,也为自然语言处理领域的研究与实践提供了宝贵的洞察。