1.fpga����Դ��
2.ç§å½fpgaåarmä¸ååº
3.FPGA原型验证是保护保护什么?
4.优秀的 Verilog/FPGA开源项目介绍(十)- H.264和H.265
5.请问在Verilog中模块源代码和测试模块源代码关系
6.FPGA纯verilog代码实现图像对数变换,提供工程源码和技术支持
fpga����Դ��
FPGA高端项目:纯verilog的源码 G-UDP 高速协议栈,提供工程源码和技术支持
前言:在现有的保护保护FPGA实现UDP方案中,我们面临以下几种常见挑战和局限性。源码首先,保护保护有一些方案使用verilog编写UDP收发器,源码代码笔记源码php但在其中使用了FIFO或RAM等IP,保护保护这种设计在实际项目中难以接受,源码因为它们缺乏基本的保护保护问题排查机制,例如ping功能。源码其次,保护保护有些方案具备ping功能,源码但代码不开源,保护保护用户无法获取源码,源码限制了问题调试和优化的保护保护可能性。第三,一些方案使用了Xilinx的Tri Mode Ethernet MAC三速网IP,尽管功能强大,但同样面临源码缺失的问题。第四,使用FPGA的GTX资源通过SFP光口实现UDP通信,这种方案便捷且无需额外网络变压器。最后,真正意义上的纯verilog实现的UDP协议栈,即全部代码均使用verilog编写,不依赖任何IP,这种方案在市面上较少见,且难以获取。
本设计采用纯verilog实现的G-UDP高速协议栈,专注于提供G-UDP回环通信测试。它旨在为用户提供一个高度可移植、功能丰富的G-UDP协议栈架构,支持用户根据需求创建自己的项目。该协议栈基于主流FPGA器件,提供了一系列工程源码,适用于Xilinx系列FPGA,使用Vivado作为开发工具。核心资源为GTY,同时支持SFP和QSFP光口。
经过多次测试,该协议栈稳定可靠,适用于教育、研究和工业应用领域,包括医疗和军用数字通信。用户可以轻松获取完整的工程源码和技术支持。本设计在遵守相关版权和使用条款的前提下,提供给个人学习和研究使用,禁止用于商业用途。
1G和G UDP协议栈版本介绍:本设计还提供了1G和G速率的源码论坛短链接UDP协议栈,包括数据回环、视频传输、AD采集传输等应用。通过阅读相关博客,用户可以找到这些版本的工程源码和应用案例。
性能特点:本协议栈具有以下特性:
- 全部使用verilog编写,无任何IP核依赖。
- 高度可移植性,适用于不同FPGA型号。
- 强大的适应性,已成功测试在多种PHY上。
- 时序收敛良好。
- 包括动态ARP功能。
- 不具备ping功能。
- 用户接口数据位宽高达位。
- 最高支持G速率。
详细设计方案:设计基于FPGA板载的TI DPISRGZ网络芯片和QSFP光口,采用GTY+QSFP光口构建G-UDP高速协议栈,同时利用1G/2.5G Ethernet PHY和SGMII接口实现1G-UDP协议栈。设计包含两个UDP数据通路,分别支持G和1G速率,使用同一高速协议栈。代码中包含axis_adapter.v模块用于8位到位数据宽度的转换,以及axis_switch.v模块用于数据路径切换的仲裁。
网络调试助手:本设计提供了一个简单的回环测试工具,支持常用Windows软件,用于测试UDP数据收发。
高速接口资源使用:设计中涉及到G-UDP和1G-UDP数据通路的实现,包括GTY和1G/2.5G Ethernet PHY资源的调用,分别应用于不同速率的UDP通信。
详细实现方案:设计包含G-PHY层、G-MAC层、1G-MAC层、AXI4-Stream总线仲裁、AXI4-Stream FIFO、G-UDP高速协议栈等关键组件。每个模块都采用verilog实现,确保高性能和可移植性。
网络数据处理:设计中的G-PHY层处理GTY输出的数据,进行解码、对齐、校验等操作。1G-MAC层则将GMII数据转换为AXI4-Stream数据。协议栈包含动态ARP层、IP层、UDP层,实现标准UDP协议功能。
工程源码获取:对于感兴趣的完整易支付源码开发者,可以获取完整的工程源码和技术支持。工程源码以某度网盘链接方式提供,确保用户能够轻松下载并进行移植和调试。
总结:本设计提供了一个强大、灵活的G-UDP高速协议栈解决方案,支持多种FPGA平台和PHY接口,适用于各种网络通信需求。通过提供的工程源码和技术支持,用户可以轻松地在自己的项目中集成和使用这些功能。
ç§å½fpgaåarmä¸ååº
ç§å½fpgaåarmä¸ååºè§£å³åæ³ï¼
1ãfpgaä¹åç§åç¨åºå°±æ²¡æé®é¢ï¼æ¹äºä¸ç¹ç¹fpgaçç¨åºåã
2ãFPGAçè¿è¡éè¦çä¸ARMçæ§å¶ï¼éè¦é对çä¸ARMç¼åçæºç 并ä¸éè¦çä¸ARMæ§è¡æºç ã
3ãéè¿fpgaç§åå®ç¨åºåï¼armå°±æ»äºï¼ç½ç»ä¹ä¸éã
FPGA原型验证是什么?
探讨FPGA原型验证的内涵与应用
在硬件设计领域,FPGA原型验证这一环节常常被忽视,然而它在验证流程中的角色至关重要。本文旨在从基础概念出发,阐述FPGA原型验证的特性与功能。
在芯片设计的验证流程中,可以将验证过程分为前端和后端两个阶段。前端验证包括EDA验证和FPGA原型验证。其中,EDA验证侧重于芯片源代码层面的测试,主要使用Verilog和System Verilog语言编写测试案例,通过模拟芯片行为,快速定位并解决潜在问题,类比于白盒测试。而FPGA原型验证则更偏向于黑盒测试,模拟芯片在实际硬件环境中的表现,评估其功能和性能。
FPGA原型验证的目的是在FPGA硬件上实现设计,模拟芯片的行为,从而进行系统级的集成验证。相较于EDA验证,原型验证能够提供更接近实际硬件环境的测试条件,有助于发现设计中的问题,并进行针对性优化。在原型验证中,通常会采用C语言、Verilog及其他脚本语言进行代码编写,以实现对设计的综合评估。
在原型验证过程中,根据验证平台的不同,可以分为FPGA验证和EMU验证。FPGA验证在硬件资源和性能上接近实际芯片,适用于验证芯片的逻辑功能和性能指标;而EMU验证则介于EDA验证和FPGA验证之间,侧重于验证底层软件功能和捕捉硬件异常,提供一种低成本的验证方法。
FPGA原型验证的主要优势在于其接近实际硬件的验证环境,能够提供系统级的集成验证,帮助设计团队发现并解决设计中的问题。同时,底部捞月源码公式由于原型验证的执行速度较快,相较于EDA验证和后端验证,它能够更高效地评估设计的性能和功能。
总的来说,FPGA原型验证在硬件设计过程中扮演着不可或缺的角色,它不仅能够提供全面的系统级验证,还能够帮助设计团队更快地发现并解决问题,从而加速芯片设计的流程。随着技术的不断进步,FPGA原型验证的应用场景将更加广泛,成为硬件设计领域中不可或缺的一部分。
优秀的 Verilog/FPGA开源项目介绍(十)- H.和H.
H.是ITU-TVCEG在H.之后推出的新视频编码标准,它在保留H.某些技术的基础上,对相关技术进行了改进。H.采用了先进技术,以优化码流、编码质量、延时和算法复杂度之间的关系,旨在提高压缩效率、鲁棒性和错误恢复能力,减少实时延时和信道获取时间,降低复杂度。
H.,即MPEG-4第十部分,是由ITU-T视频编码专家组(VCEG)和ISO/IEC动态图像专家组(MPEG)联合组成的联合视频组(JVT)提出的高度压缩数字视频编解码器标准。H.的最大优势是其高数据压缩比率,在同等图像质量的条件下,其压缩比是MPEG-2的2倍以上,是MPEG-4的1.5~2倍。
H.旨在在有限带宽下传输更高质量的网络视频,仅需原先的一半带宽即可播放相同质量的视频。这意味着,我们的智能手机、平板机等移动设备将能够直接在线播放p的全高清视频。H.标准也同时支持4K(×)和8K(×)超高清视频。
H.与H.的不同之处在于,H.在H.的基础上进行了改进,包括帧内预测、帧间预测、转换、量化、去区块滤波器和熵编码等模块。H.的编码架构大致上与H.相似,但整体被分为三个基本单位:编码单位(CU)、预测单位(PU)和转换单位(TU)。
复旦大学H./H.开源IP,包括H. Video Encoder IP Core,是棋牌全民推广源码由复旦大学专用集成电路与系统国家重点实验室(State Key Lab of ASIC & System,Fudan University)视频图像处理实验室(VIP Lab)范益波教授研究团队开发完成,并开放源代码。
开源地址:openasic.org
关于上板验证,网站上有相关的验证板卡代码,如下:
github上的开源H.,开源地址:github.com/tishi/h...
用verilog和system verilog编写,在FPGA板上用Xilinx ZYNQ验证,运行最高MHZ。
内容:文件夹“src”包含所有解码源文件。文件夹“tb”包含测试台文件,ext_ram_.v使用axi3接口模拟ddr。文件夹“pli_fputc”是verilog pli,用于在运行模拟时将输出bin写入文件。
使用方法:模拟:将所有测试平台和源代码文件添加到您的模拟项目源中,例如modelsim。将测试文件in.放到您的模拟项目文件夹中。然后运行,例如,对于modelsim,运行“vsim -pli pli_fputc.dll bitstream_tb”。输出是out.yuv和一些日志文件。
在FPGA板上运行:将“src”文件夹中的源文件添加到您的FPGA项目中。顶部文件是decode_stream.sv。两个接口,stream_mem_xxx用于将H比特流馈送到解码器。
github上的开源H.,开源地址:github.com/aiminickwong...
无介绍
说明:第一个项目由复旦大学专用集成电路与系统国家重点实验室(State Key Lab of ASIC & System,Fudan University)视频图像处理实验室(VIP Lab)推出,不论项目完成度还是文档说明,都非常详细,同时上面给的是该项目的论坛,论坛上有相关工作人员维护,活跃度很高,适合去学习使用。
后面两个项目,碎碎并没验证过,但是感觉不怎么靠谱,README完整度不高,有兴趣的可以去看看。
最后,还是感谢各个大佬开源的项目,让我们受益匪浅。后面有什么感兴趣方面的项目,大家可以在后台留言或者加微信留言,今天就到这,我是爆肝的碎碎思,期待下期文章与你相见。
优秀的 Verilog/FPGA开源项目介绍(九)- DP(增改版)
优秀的 Verilog/FPGA开源项目介绍(八)- HDMI
优秀的 Verilog/FPGA开源项目介绍(七)- CAN通信
介绍一些新手入门FPGA的优秀网站(新增2)
优秀的 Verilog/FPGA开源项目介绍(六)- MIPI
优秀的 Verilog/FPGA开源项目介绍(五)- USB通信
优秀的 Verilog/FPGA开源项目介绍(四)- Ethernet
优秀的 Verilog/FPGA开源项目介绍(三)- 大厂的项目
优秀的 Verilog/FPGA开源项目介绍(二)-RISC-V
优秀的 Verilog/FPGA开源项目介绍(一)-PCIe通信
请问在Verilog中模块源代码和测试模块源代码关系
首先,模块源代码描述了一个电路,这个电路要工作,肯定需要一个外部环境(比如clk信号的输入之类的),然后,这个电路的输出我们也希望能查看。
在实际烧写进FPGA之前,我们希望用一个软件来模拟这个电路工作的情况,也就是所说的仿真。
然后,测试代码(testbench)是用来模拟源代码所实现的电路的外部环境的,也可以通过软件来查看这个电路的输出信号的波形。
所以,不写测试代码,只要你能保障源代码正确无误,是可以不用仿真的(但说实话,谁能保证呢,除非电路太简单了)。
另外,由于模块的源代码是要生成具体器件的,所以必须是可综合的。而测试代码只是模拟外部环境,所以不需要是可综合的。
FPGA纯verilog代码实现图像对数变换,提供工程源码和技术支持
图像对数变换旨在优化图像的对比度,尤其提升暗部细节。变换公式为g = c*log(1 + f),其中c为常数,f代表像素值,范围为0-。对数曲线在低像素值区域斜率较大,高像素值区域斜率较低,因此变换能增强图像暗部对比度,改善细节。
使用MATLAB生成log系数,转换为.coe文件,再通过Verilog代码固化为查找表,形成log系数表。
借助FPGA实现图像对数变换,只需将图像像素与查找表一一对应输出。顶层Verilog代码负责实现这一流程。
使用Vivado与MATLAB联合仿真,展示变换效果。仿真结果表明,变换后的图像对比度提升,暗部细节明显增强。
Vivado工程设计包括HDMI输入/输出、图像数据采集、缓存管理等关键组件。HDMI输入/输出由Silicon Image公司的SIL和SIL完成,数据通过FDMA传输,然后存入DDR3做缓存。
顶层代码负责整个流程控制,确保图像处理流程正确执行。
进行上板调试验证,并进行演示。工程代码通过链接形式提供下载,确保用户能获取所需资源。
FPGA高端项目:SDI 视频+音频编解码,提供工程源码和技术支持
FPGA高端项目:SDI 视频+音频编解码,提供工程源码和技术支持
本文详述了一款使用Xilinx 7系列Kintex7--xc7ktffg-2型号FPGA实现的3G-SDI视频+音频编解码方案,涵盖了编码、音频解码及视频解码过程,并提供了完整的工程源码及技术支持。该设计适用于需要处理SDI视频与音频的项目,如医疗、军工领域或图像处理等高速接口相关应用。
设计分为三部分:3G-SDI视频编码、3G-SDI音频解码和3G-SDI视频解码,整合为一个工程,包括视频发送和视频+音频接收功能。在视频接收阶段,首先通过GVA芯片进行均衡EQ处理,随后使用Xilinx官方GTX原语进行串并转换,调用SMPTE SD/HD/3G-SDI IP核实现解码。音频解码则采用UHD-SDI Audio IP核,最后将音频数据转换为i2s格式并输出到扬声器。视频发送部分,使用静态彩条作为源数据,通过SMPTE SD/HD/3G-SDI IP核编码,并由GTX进行串化,GV芯片增强驱动,最终通过SDI转HDMI盒子显示。
设计参考了Xilinx官方文档,确保了在不同输入状态下的线速率切换,确保了GTX的稳定运行。IP配置简洁明了,支持SD-SDI、HD-SDI和3G-SDI的编解码。音频解码后输出至i2s模块,再通过TLVAIC芯片播放SDI音频。视频发送通过静态彩条生成,经过编码、串化及驱动增强后,通过SDI接口输出至显示器。
该设计在Vivado.2版本下实现,提供了一套完整的工程源码,供用户移植及开发使用。同时,作者还提供了相关的GT高速接口解决方案,包括基于A7系列FPGA的GTP方案、K7或ZYNQ系列FPGA的GTX方案、KU或V7系列FPGA的GTH方案及KU+系列FPGA的GTY方案。
为了帮助用户更好地理解和应用该设计,作者在文章末尾提供了获取完整工程源码及技术支持的方式。请注意,由于代码文件较大,无法通过邮箱发送,而是采用百度网盘链接方式提供下载。请耐心阅读至文章结尾,按照指引获取资源。
特别提醒:本工程及其源码仅供个人学习和研究使用,禁止用于商业用途。如在使用过程中遇到问题或有任何疑问,请随时联系博主或关注官方渠道,获取技术支持。本设计及源码包含了作者和网络资源的贡献,若有冒犯之处,请私信博主批评指正。
FPGA高端项目:FPGA基于GS+GS架构的SDI视频接收发送,提供3套工程源码和技术支持
FPGA高端项目:FPGA基于GS+GS架构的SDI视频接收发送,提供3套工程源码和技术支持
前言:目前FPGA实现SDI视频编解码有专用芯片方案和FPGA逻辑资源实现两种方法。专用芯片方案简单但成本较高,FPGA逻辑资源方案则合理利用FPGA资源但操作难度较大。本博提供硬件开发板、工程源码和相关技术文档支持。
设计详情:本设计使用Zynq-xc7zffg-2中端FPGA开发板结合GS和GS芯片实现SDI视频接收发送。视频源选择多样,包括SDI相机、动态彩条或模拟视频,通过顶层定义宏实现选择。视频解码由GS完成,BT格式视频转换为RGB通过纯verilog代码实现。图像缓存使用FDMA或VDMA架构,存储介质为DDR3,支持PL端和PS端。转换后的RGB视频经过RGB转BT模块编码为SDI视频,最终输出。本设计提供3套工程源码,分别为HD-SDI相机输入、动态彩条模拟输入和兼容Zynq系列FPGA的方案。
源码详情:工程源码1使用FDMA图像缓存,缓存PL端DDR3;源码2使用FDMA缓存PS端DDR3;源码3使用VDMA缓存PS端DDR3。各源码均通过Vivado.1开发环境实现,支持HD-SDI输入,输出3G-SDI视频,分辨率x@Hz。此设计适用于SDI视频的接收和发送,特别适合医疗、军工等领域数字成像和图像传输。
获取方式:请耐心阅读文章末尾获取工程源码和技术支持的说明。
相关方案:本博主提供FPGA工程项目汇总,包括SDI编解码方案、SDI接收+图像缩放应用、SDI接收+纯verilog图像缩放+多路视频拼接应用等。
SDI接收+图像缩放应用:采用GS接收SDI视频,进行图像缩放和图像缓存(FDMA或VDMA方案)后,使用GS发送SDI视频,最终以3G-SDI输出。提供3套工程源码。
SDI接收+纯verilog图像缩放+多路视频拼接应用:采用GS接收SDI视频,纯verilog图像缩放,多路视频拼接(2路、4路、8路、路),图像缓存(FDMA或VDMA方案),最终使用GS编码SDI视频,以3G-SDI输出。提供8套工程源码。
SDI接收+HLS图像缩放+多路视频拼接应用:采用GS接收SDI视频,HLS图像缩放,多路视频拼接(2路、4路、8路、路),图像缓存(VDMA方案),使用GS编码SDI视频,最终以3G-SDI输出。提供4套工程源码。
SDI接收+OSD动态字符叠加输出应用:采用GS接收SDI视频,进行动态字符叠加,图像缓存(VDMA方案),使用GS编码SDI视频,最终以3G-SDI输出。提供1套工程源码。
SDI接收+HLS多路视频融合叠加应用:采用GS接收SDI视频,HLS多路视频融合叠加,图像缓存(VDMA方案),使用GS编码SDI视频,最终以3G-SDI输出。提供1套工程源码。
SDI接收+GTX 8b/b编解码SFP光口传输应用:采用GS接收SDI视频,进行8b/b编解码,通过板载SFP光口实现数据回环,使用GS编码SDI视频,最终以3G-SDI输出。提供2套工程源码。
FPGA的SDI视频编解码项目培训:本博提供FPGA SDI视频编解码高级项目培训班,提供全套工程源码和设计文档,指导开发者进行浅层次学习,并提供一对一咨询、周末线上检查等服务。
设计原理框图:工程源码1和2采用FDMA图像缓存,工程源码3采用VDMA图像缓存。
动态彩条:可模拟SDI相机视频,分辨率、边框宽度、移动方块大小等参数可自定义。
SDI相机:选择HD-SDI相机,输出x@Hz,本设计兼容SD-SDI、HD-SDI、3G-SDI。
GS+GS架构:采用GS接收、GS编码实现SDI视频接收发送。
BT转RGB:将BT格式视频转换为RGB格式,参考Xilinx官方设计。
图像缓存:使用FDMA或VDMA架构,缓存介质为DDR3,支持PL端和PS端。
SDI转HDMI盒子:将SDI视频转换为HDMI信号,用于显示器显示。
源码架构:工程源码1和2采用FDMA方案,缓存PL端DDR3或PS端DDR3;工程源码3采用VDMA方案,缓存PS端DDR3。
工程源码详解:介绍FPGA SDI转SDI工程的开发板型号、输入输出、接收发送方案、缓存路径等细节,提供Block Design和代码架构。
资源消耗和功耗:提供工程资源消耗和功耗数据。
移植说明:介绍vivado版本不一致、FPGA型号不一致时的处理方法。
上板调试验证:提供上板调试验证的准备工作和器材需求,演示输出视频效果。
福利:提供工程代码获取方式,通过某度网盘链接发送。