1.hadoop å®è£
å
çåºå«ãå¨çº¿ç谢谢åä½ã
2.深入理解 Hadoop (七)YARN资源管理和调度详解
3.å¦ä½å¨win7ä¸çeclipseä¸è°è¯Hadoop2.2.0çç¨åº
hadoop å®è£ å çåºå«ãå¨çº¿ç谢谢åä½ã
hadoop-2.6.0-src.tar.gzæ¯æºç å缩æ件ãå¯ä»¥ç¨eclipseå¯¼å ¥ç 究æºç ï¼æè Mavenæ建ç¼è¯æå ã
hadoop-2.6.0.tar.gzæ¯å·²ç»å®æ¹åå¸çå缩å ï¼å¯ä»¥ç´æ¥ä½¿ç¨ãä¸è¿å®ç½ä¸è½½çhadoopåå¸çæ¬åªéåxç¯å¢ï¼è¥è¦xçåéè¦Mavenéæ°æ建ã
*.mds æ¯æè¿°æ件ï¼è®°å½å缩å çMD5ï¼SHA1çä¿¡æ¯ã
深入理解 Hadoop (七)YARN资源管理和调度详解
Hadoop最初为批处理设计,源码其资源管理与调度仅支持FIFO机制。分析然而,源码随着Hadoop的分析普及与用户量的增加,单个集群内的源码应用程序类型与数量激增,FIFO调度机制难以高效利用资源,分析星球源码最高几级也无法满足不同应用的源码服务质量需求,故需设计适用于多用户的分析资源调度系统。
YARN采用双层资源调度模型:ResourceManager中的源码资源调度器分配资源给ApplicationMaster,由YARN决定;ApplicationMaster再将资源分配给内部任务Task,分析用户自定。源码YARN作为统一调度系统,分析满足调度规范的源码分布式应用皆可在其中运行,调度规范包括定义ApplicationMaster向RM申请资源,分析AM自行完成Container至Task分配。源码iappQQ查询地址源码YARN采用拉模型实现异步资源分配,RM分配资源后暂存缓冲区,等待AM通过心跳获取。
Hadoop-2.x版本中YARN提供三种资源调度器,分别为...
YARN的队列管理机制包括用户权限管理与系统资源管理两部分。CapacityScheduler的核心特点包括...
YARN的更多理解请参考官方文档:...
在分布式资源调度系统中,资源分配保证机制常见有...
YARN采用增量资源分配,-4 16的源码避免浪费但不会出现资源饿死现象。YARN默认资源分配算法为DefaultResourceCalculator,专注于内存调度。DRF算法将最大最小公平算法应用于主资源上,解决多维资源调度问题。实例分析中,系统中有9个CPU和GB RAM,溯源码燕窝碎两个用户分别运行两种任务,所需资源分别为...
资源抢占模型允许每个队列设定最小与最大资源量,以确保资源紧缺与极端情况下的需求。资源调度器在负载轻队列空闲时会暂时分配资源给负载重队列,仅在队列突然收到新提交应用程序时,调度器将资源归还给该队列,避免长时间等待。peer fabric 源码分析
YARN最初采用平级队列资源管理,新版本改用层级队列管理,优点包括...
CapacityScheduler配置文件capacity-scheduler.xml包含资源最低保证、使用上限与用户资源限制等参数。管理员修改配置文件后需运行"yarn rmadmin -refreshQueues"。
ResourceScheduler作为ResourceManager中的关键组件,负责资源管理和调度,采用可插拔策略设计。初始化、接收应用和资源调度等关键功能实现,RM收到NodeManager心跳信息后,向CapacityScheduler发送事件,调度器执行一系列操作。
CapacityScheduler源码解读涉及树型结构与深度优先遍历算法,以保证队列优先级。其核心方法包括...
在资源分配逻辑中,用户提交应用后,AM申请资源,资源表示为Container,包含优先级、资源量、容器数目等信息。YARN采用三级资源分配策略,按队列、应用与容器顺序分配空闲资源。
对比FairScheduler,二者均以队列为单位划分资源,支持资源最低保证、上限与用户限制。最大最小公平算法用于资源分配,确保资源公平性。
最大最小公平算法分配示意图展示了资源分配过程与公平性保证。
å¦ä½å¨win7ä¸çeclipseä¸è°è¯Hadoop2.2.0çç¨åº
å¨ä¸ä¸ç¯åæä¸ï¼æ£ä»å·²ç»è®²äºHadoopçåæºä¼ªåå¸çé¨ç½²ï¼æ¬ç¯ï¼æ£ä»å°±è¯´ä¸ï¼å¦ä½eclipseä¸è°è¯hadoop2.2.0,å¦æä½ ä½¿ç¨çè¿æ¯hadoop1.xççæ¬ï¼é£ä¹ï¼ä¹æ²¡äºï¼æ£ä»å¨ä»¥åçå客éï¼ä¹åè¿eclipseè°è¯1.xçhadoopç¨åºï¼ä¸¤è æ大çä¸åä¹å¤å¨äºä½¿ç¨çeclipseæ件ä¸åï¼hadoop2.xä¸hadoop1.xçAPIï¼ä¸å¤ªä¸è´ï¼æ以æ件ä¹ä¸ä¸æ ·ï¼æ们åªéè¦ä½¿ç¨åå«å¯¹åºçæ件å³å¯.ä¸é¢å¼å§è¿å ¥æ£é¢:
åºå· å称 æè¿°
1 eclipse Juno Service Release 4.2çæ¬
2 æä½ç³»ç» Windows7
3 hadoopçeclipseæ件 hadoop-eclipse-plugin-2.2.0.jar
4 hadoopçé群ç¯å¢ èææºLinuxçCentos6.5åæºä¼ªåå¸å¼
5 è°è¯ç¨åº Hellow World
éå°çå 个é®é¢å¦ä¸ï¼
Java代ç
java.io.IOException: Could not locate executable null\bin\winutils.exe in the Hadoop binaries.
解å³åæ³:
å¨org.apache.hadoop.util.Shellç±»çcheckHadoopHome()æ¹æ³çè¿åå¼éååºå®ç
æ¬æºhadoopçè·¯å¾ï¼æ£ä»å¨è¿éæ´æ¹å¦ä¸ï¼
Java代ç private static String checkHadoopHome() {
// first check the Dflag hadoop.home.dir with JVM scope
//System.setProperty("hadoop.home.dir", "...");
String home = System.getProperty("hadoop.home.dir");
// fall back to the system/user-global env variable
if (home == null) {
home = System.getenv("HADOOP_HOME");
}
try {
// couldn't find either setting for hadoop's home directory
if (home == null) {
throw new IOException("HADOOP_HOME or hadoop.home.dir are not set.");
}
if (home.startsWith("\"") && home.endsWith("\"")) {
home = home.substring(1, home.length()-1);
}
// check that the home setting is actually a directory that exists
File homedir = new File(home);
if (!homedir.isAbsolute() || !homedir.exists() || !homedir.isDirectory()) {
throw new IOException("Hadoop home directory " + homedir
+ " does not exist, is not a directory, or is not an absolute path.");
}
home = homedir.getCanonicalPath();
} catch (IOException ioe) {
if (LOG.isDebugEnabled()) {
LOG.debug("Failed to detect a valid hadoop home directory", ioe);
}
home = null;
}
//åºå®æ¬æºçhadoopå°å
home="D:\\hadoop-2.2.0";
return home;
}
第äºä¸ªå¼å¸¸ï¼Could not locate executable D:\Hadoop\tar\hadoop-2.2.0\hadoop-2.2.0\bin\winutils.exe in the Hadoop binaries. æ¾ä¸å°winä¸çæ§è¡ç¨åºï¼å¯ä»¥å»ä¸è½½binå ï¼è¦çæ¬æºçhadoopè·ç®å½ä¸çbinå å³å¯
第ä¸ä¸ªå¼å¸¸ï¼
Java代ç Exception in thread "main" java.lang.IllegalArgumentException: Wrong FS: hdfs://...:/user/hmail/output/part-, expected: file:///
at org.apache.hadoop.fs.FileSystem.checkPath(FileSystem.java:)
at org.apache.hadoop.fs.RawLocalFileSystem.pathToFile(RawLocalFileSystem.java:)
at org.apache.hadoop.fs.RawLocalFileSystem.getFileStatus(RawLocalFileSystem.java:)
at org.apache.hadoop.fs.FilterFileSystem.getFileStatus(FilterFileSystem.java:)
at org.apache.hadoop.fs.ChecksumFileSystem$ChecksumFSInputChecker.<init>(ChecksumFileSystem.java:)
at org.apache.hadoop.fs.ChecksumFileSystem.open(ChecksumFileSystem.java:)
at org.apache.hadoop.fs.FileSystem.open(FileSystem.java:)
at com.netease.hadoop.HDFSCatWithAPI.main(HDFSCatWithAPI.java:)
åºç°è¿ä¸ªå¼å¸¸ï¼ä¸è¬æ¯HDFSçè·¯å¾åçæé®é¢ï¼è§£å³åæ³ï¼æ·è´é群ä¸çcore-site.xmlåhdfs-site.xmlæ件ï¼æ¾å¨eclipseçsrcæ ¹ç®å½ä¸å³å¯ã
第å个å¼å¸¸ï¼
Java代ç Exception in thread "main" java.lang.UnsatisfiedLinkError: org.apache.hadoop.io.nativeio.NativeIO$Windows.access0(Ljava/lang/String;I)Z
åºç°è¿ä¸ªå¼å¸¸ï¼ä¸è¬æ¯ç±äºHADOOP_HOMEçç¯å¢åéé ç½®çæé®é¢ï¼å¨è¿éæ£ä»ç¹å«è¯´æä¸ä¸ï¼å¦ææ³å¨Winä¸çeclipseä¸æåè°è¯Hadoop2.2ï¼å°±éè¦å¨æ¬æºçç¯å¢åéä¸ï¼æ·»å å¦ä¸çç¯å¢åéï¼
ï¼1ï¼å¨ç³»ç»åéä¸ï¼æ°å»ºHADOOP_HOMEåéï¼å±æ§å¼ä¸ºD:\hadoop-2.2.0.ä¹å°±æ¯æ¬æºå¯¹åºçhadoopç®å½
(2)å¨ç³»ç»åéçPathéï¼è¿½å %HADOOP_HOME%/binå³å¯
以ä¸çé®é¢ï¼æ¯æ£ä»å¨æµè¯éå°çï¼ç»è¿å¯¹çä¸è¯ï¼æ们çeclipseç»äºå¯ä»¥æåçè°è¯MRç¨åºäºï¼æ£ä»è¿éçHellow Worldæºç å¦ä¸ï¼
Java代ç package com.qin.wordcount;
import java.io.IOException;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
/***
*
* Hadoop2.2.0æµè¯
* æ¾WordCountçä¾å
*
* @author qindongliang
*
* hadoopææ¯äº¤æµç¾¤ï¼
*
*
* */
public class MyWordCount {
/**
* Mapper
*
* **/
private static class WMapper extends Mapper<LongWritable, Text, Text, IntWritable>{
private IntWritable count=new IntWritable(1);
private Text text=new Text();
@Override
protected void map(LongWritable key, Text value,Context context)
throws IOException, InterruptedException {
String values[]=value.toString().split("#");
//System.out.println(values[0]+"========"+values[1]);
count.set(Integer.parseInt(values[1]));
text.set(values[0]);
context.write(text,count);
}
}
/**
* Reducer
*
* **/
private static class WReducer extends Reducer<Text, IntWritable, Text, Text>{
private Text t=new Text();
@Override
protected void reduce(Text key, Iterable<IntWritable> value,Context context)
throws IOException, InterruptedException {
int count=0;
for(IntWritable i:value){
count+=i.get();
}
t.set(count+"");
context.write(key,t);
}
}
/**
* æ¹å¨ä¸
* (1)shellæºç éæ·»å checkHadoopHomeçè·¯å¾
* (2)è¡ï¼FileUtilséé¢
* **/
public static void main(String[] args) throws Exception{
// String path1=System.getenv("HADOOP_HOME");
// System.out.println(path1);
// System.exit(0);
JobConf conf=new JobConf(MyWordCount.class);
//Configuration conf=new Configuration();
//conf.set("mapred.job.tracker","...:");
//读åpersonä¸çæ°æ®å段
// conf.setJar("tt.jar");
//注æè¿è¡ä»£ç æ¾å¨æåé¢ï¼è¿è¡åå§åï¼å¦åä¼æ¥
/**Jobä»»å¡**/
Job job=new Job(conf, "testwordcount");
job.setJarByClass(MyWordCount.class);
System.out.println("模å¼ï¼ "+conf.get("mapred.job.tracker"));;
// job.setCombinerClass(PCombine.class);
// job.setNumReduceTasks(3);//设置为3
job.setMapperClass(WMapper.class);
job.setReducerClass(WReducer.class);
job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
String path="hdfs://...:/qin/output";
FileSystem fs=FileSystem.get(conf);
Path p=new Path(path);
if(fs.exists(p)){
fs.delete(p, true);
System.out.println("è¾åºè·¯å¾åå¨ï¼å·²å é¤ï¼");
}
FileInputFormat.setInputPaths(job, "hdfs://...:/qin/input");
FileOutputFormat.setOutputPath(job,p );
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
æ§å¶å°ï¼æå°æ¥å¿å¦ä¸ï¼
Java代ç INFO - Configuration.warnOnceIfDeprecated() | mapred.job.tracker is deprecated. Instead, use mapreduce.jobtracker.address
模å¼ï¼ local
è¾åºè·¯å¾åå¨ï¼å·²å é¤ï¼
INFO - Configuration.warnOnceIfDeprecated() | session.id is deprecated. Instead, use dfs.metrics.session-id
INFO - JvmMetrics.init() | Initializing JVM Metrics with processName=JobTracker, sessionId=
WARN - JobSubmitter.copyAndConfigureFiles() | Hadoop command-line option parsing not performed. Implement the Tool interface and execute your application with ToolRunner to remedy this.
WARN - JobSubmitter.copyAndConfigureFiles() | No job jar file set. User classes may not be found. See Job or Job#setJar(String).
INFO - FileInputFormat.listStatus() | Total input paths to process : 1
INFO - JobSubmitter.submitJobInternal() | number of splits:1
INFO - Configuration.warnOnceIfDeprecated() | user.name is deprecated. Instead, use mapreduce.job.user.name
INFO - Configuration.warnOnceIfDeprecated() | mapred.output.value.class is deprecated. Instead, use mapreduce.job.output.value.class
INFO - Configuration.warnOnceIfDeprecated() | mapred.mapoutput.value.class is deprecated. Instead, use mapreduce.map.output.value.class
INFO - Configuration.warnOnceIfDeprecated() | mapreduce.map.class is deprecated. Instead, use mapreduce.job.map.class
INFO - C