1.?最好???õ?springԴ??
2.Spring源码- 02 Spring IoC容器启动之refresh方法
3.25. Spring源码篇之SpEL表达式
4.Spring源码Autowired注入流程
5.Spring源码 1.源码的下载与编译(by Gradle)
6.Spring容器之refresh方法源码分析
????õ?springԴ??
本文将简要介绍AOP(面向切面编程)的基础知识与使用方法,并深入剖析Spring AOP源码。用的源码源码首先,教程我们需要理解AOP的最好基本概念。
1. **基础知识
**1.1 **什么是用的源码源码AOP?
**AOP全称为Aspect Oriented Programming,即面向切面编程。教程reboot 源码AOP的最好思想中,周边功能(如性能统计、用的源码源码日志记录、教程事务管理等)被定义为切面,最好核心功能与切面功能独立开发,用的源码源码然后将两者“编织”在一起,教程这就是最好AOP的核心。
AOP能够将与业务无关、用的源码源码却为业务模块共同调用的教程逻辑封装,减少系统重复代码,降低模块间的耦合度,有利于系统的可扩展性和可维护性。
1.2 **AOP基础概念
**解释较为官方,以下用“方言”解释:AOP包括五种通知分类。
1.3 **AOP简单示例
**创建`Louzai`类,添加`LouzaiAspect`切面,并在`applicationContext.xml`中配置。程序入口处添加`"睡觉"`方法并添加前置和后置通知。接下来,我们将探讨Spring内部如何实现这一过程。
1.4 **Spring AOP工作流程
**为了便于理解后面的源码,我们将整体介绍源码执行流程。整个Spring AOP源码分为三块,结合示例进行讲解。
第一块是前置处理,创建`Louzai`Bean前,遍历所有切面信息并存储在缓存中。第二块是后置处理,创建`Louzai`Bean时,主要处理两件事。第三块是执行切面,通过“责任链+递归”执行切面。
2. **源码解读
**注意:Spring版本为5.2..RELEASE,否则代码可能不同!这里,我们将从原理部分开始,逐步深入源码。
2.1 **代码入口
**从`getBean()`函数开始,进入创建Bean的逻辑。
2.2 **前置处理
**主要任务是遍历切面信息并存储。
这是重点!请务必注意!获取切面信息流程结束,后续操作都从缓存`advisorsCache`获取。
2.2.1 **判断是否为切面
**执行逻辑为:判断是否包含切面信息。
2.2.2 **获取切面列表
**进入`getAdvice()`,生成切面信息。
2.3 **后置处理
**主要从缓存拿切面,源码在哪找的与`Louzai`方法匹配,创建AOP代理对象。
进入`doCreateBean()`,执行后续逻辑。
2.3.1 **获取切面
**首先,查看如何获取`Louzai`的切面列表。
进入`buildAspectJAdvisors()`,方法用于存储切面信息至缓存`advisorsCache`。随后回到`findEligibleAdvisors()`,从缓存获取所有切面信息。
2.3.2 **创建代理对象
**有了`Louzai`的切面列表,开始创建AOP代理对象。
这是重点!请仔细阅读!这里有两种创建AOP代理对象方式,我们选择使用Cglib。
2.4 **切面执行
**通过“责任链+递归”执行切面与方法。
这部分逻辑非常复杂!接下来是“执行切面”最核心的逻辑,简述设计思路。
2.4.1 **第一次递归
**数组第一个对象执行`invoke()`,参数为`CglibMethodInvocation`。
执行完毕后,继续执行`CglibMethodInvocation`的`process()`。
2.4.2 **第二次递归
**数组第二个对象执行`invoke()`。
2.4.3 **第三次递归
**数组第三个对象执行`invoke()`。
执行完毕,退出递归,查看`invokeJoinpoint()`执行逻辑,即执行主方法。回到第三次递归入口,继续执行后续切面。
切面执行逻辑已演示,直接查看执行方法。
流程结束时,依次退出递归。
2.4.4 **设计思路
**这部分代码研究了大半天,因为这里不是纯粹的责任链模式。
纯粹的责任链模式中,对象内部有一个自身的`next`对象,执行当前对象方法后,启动`next`对象执行,直至最后一个`next`对象执行完毕,或中途因条件中断执行,责任链退出。
这里`CglibMethodInvocation`对象内部无`next`对象,通过`interceptorsAndDynamicMethodMatchers`数组控制执行顺序,依次执行数组中的对象,直至最后一个对象执行完毕,责任链退出。
这属于责任链,实现方式不同,后续会详细剖析。行人检测c 源码下面讨论类之间的关系。
主对象为`CglibMethodInvocation`,继承于`ReflectiveMethodInvocation`,`process()`的核心逻辑在`ReflectiveMethodInvocation`中。
`ReflectiveMethodInvocation`的`process()`控制整个责任链的执行。
`ReflectiveMethodInvocation`的`process()`方法中,包含一个长度为3的数组`interceptorsAndDynamicMethodMatchers`,存储了3个对象,分别为`ExposeInvocationInterceptor`、`MethodBeforeAdviceInterceptor`、`AfterReturningAdviceInterceptor`。
注意!这3个对象都继承了`MethodInterceptor`接口。
每次`invoke()`调用时,都会执行`CglibMethodInvocation`的`process()`。
是否有些困惑?别着急,我将再次帮你梳理。
对象与方法的关系:
可能有同学疑惑,`invoke()`的参数为`MethodInvocation`,没错!但`CglibMethodInvocation`也继承了`MethodInvocation`,可自行查看。
执行逻辑:
设计巧妙之处在于,纯粹的责任链模式中,`next`对象需要保证类型一致。但这里3个对象内部没有`next`成员,不能直接使用责任链模式。怎么办呢?就单独设计了`CglibMethodInvocation.process()`,通过无限递归`process()`实现责任链逻辑。
这就是我们为什么要研究源码,学习优秀的设计思路!
3. **总结
**本文首先介绍了AOP的基本概念与原理,通过示例展示了AOP的应用。之后深入剖析了Spring AOP源码,分为三部分。
本文是Spring源码解析的第三篇,感觉是难度较大的一篇。图解代码花费了6个小时,整个过程都沉浸在代码的解析中。
难度不在于抠图,而是“切面执行”的设计思路,即使流程能走通,将设计思想总结并清晰表达给读者,需要极大的耐心与理解能力。
今天的源码解析到此结束,有关Spring源码的学习,大家还想了解哪些内容,欢迎留言给楼仔。
Spring源码- Spring IoC容器启动之refresh方法
在注册阶段,AnnotationConfigApplicationContext构造方法中的第一个方法被分析过。接下来,我们关注第二个方法:register(componentClasses)。在使用XML配置方式时,ea的交易源码通过new ClassPathXmlApplicationContext("classpath:spring.xml")来创建实例,其中需要指定xml配置文件路径。使用注解方式时,也需要为ApplicationContext提供起始配置源头,这里使用配置类代替xml配置文件,按照配置类中的注解(如@ComponentScan、@Import、@Bean)解析并注入Bean到IoC容器。
通过配置类,Spring解析注解实现Bean的注入。使用@Configuration注解定义的配置类相当于xml配置文件,但目前Spring推荐使用注解方式,xml配置的使用概率正在降低。
register(componentClasses)方法的核心逻辑在AnnotatedBeanDefinitionReader#doRegisterBean中,将传入的配置类解析为BeanDefinition并注册到IoC容器。ConfigurationClassPostProcessor这个BeanFactory后置处理器在IoC初始化时,获取配置类的BeanDefinition集合,开始解析。
真正启动IoC容器的流程在refresh()方法中,这是了解IoC容器启动流程的关键步骤。refresh方法在AbstractApplicationContext中定义,采用模板模式,提供IoC初始化流程的基本实现,子类可以扩展。
下面分析refresh()方法的每个步骤,以了解IoC容器的启动流程。
prepareRefresh方法主要在refresh执行前进行准备工作,如设置Context的启动时间、状态,以及扩展系统属性相关。
initPropertySources()方法主要用于扩展配置来源,如网络、物理文件、数据库等加载配置信息。StandardEnvironment默认只提供加载系统变量和应用变量的功能,用于子类扩展。
❝initPropertySources方法常见扩展场景包括:❞
getEnvironment().validateRequiredProperties()确保设置的必要属性在环境中存在,否则抛出异常终止应用。
BeanFactory是Spring的基本IoC容器,ApplicationContext包装了BeanFactory,提供更智能、更便捷的功能。ConfigurableListableBeanFactory beanFactory = obtainFreshBeanFactory();获取的BeanFactory是IoC容器初始化工作的基础。
上面获取的BeanFactory还不能直接使用,需要填充必要的配置信息。至此,IoC容器的启动流程基本完成。
这里对IoC启动流程有个大致、直观的印象。主要步骤包括:准备阶段、配置来源扩展、初始化BeanFactory、填充配置、开心泉州麻将源码解析配置类、注册Bean、实例化BeanPostProcessor、初始化国际化和事件机制、以及创建内嵌Servlet容器(在SpringBoot中实现)。这些步骤确保了IoC容器顺利启动并管理Bean。
. Spring源码篇之SpEL表达式
Spring的SpEL表达式,即Spring Expression Language,是Spring框架中实现复杂功能的关键组件。在Spring中,独立的spring-expression模块用于支持这一功能。本文将提供对SpEL表达式源码的简要分析,以帮助理解其基本用法。 在AbstractBeanFactory中,有一个名为beanExpressionResolver的属性,用于配置默认的表达式解析器。在初始化BeanFactory时,通过AbstractApplicationContext#prepareBeanFactory设置默认值,该值默认为开启状态,可通过配置参数spring.spel.ignore=false来关闭表达式功能。 核心解析组件是BeanExpressionResolver,它提供了evaluate方法,用于解析传入的表达式并返回结果。作为实现类,StandardBeanExpressionResolver具体实现evaluate方法,执行解析任务。 解析SpEL表达式的接口是ExpressionParser,它接收表达式和ParserContext,后者定义了解析规则。关键子类包括SpelExpressionParser、InternalSpelExpressionParser和TemplateAwareExpressionParser。在解析过程中,会调用TemplateAwareExpressionParser#parseExpressions方法,该方法进一步调用InternalSpelExpressionParser#doParseExpression,实现表达式的详细解析。解析流程的关键步骤是tokenizer.process和eatExpression方法,它们负责识别和处理特殊字符以及逻辑运算。 SpEL表达式本质上是一个语法树结构,涉及复杂的运算、对象访问和方法调用。它支持的字符规范包括括号、逻辑运算符(如or、and)、比较运算符(如>、<)、点号(用于访问对象属性)、问号(用于条件判断)、美元符号(用于访问变量)等。 以下是使用SpEL表达式的简单示例:案例一
输出特定值或表达式的结果。案例二
对数据集进行处理,例如筛选、排序或计算。案例三
执行对象方法,如调用实例方法或访问静态方法。案例四
使用SpEL获取Spring容器中的Bean实例,包括使用@和&注解来分别获取普通Bean和FactoryBean。 通过以上分析,我们大致了解了SpEL表达式的功能和基本用法。理解这些关键类及其功能有助于在实际开发中灵活运用SpEL,提高代码的可维护性和可读性。尽管SpEL的实现细节复杂,掌握其核心概念和用法足以应对常见的应用场景。Spring源码Autowired注入流程
在Spring框架中,Autowired注解的注入流程是一个开发者常问的问题。本文将带你深入了解这一过程,基于jdk1.8和spring5.2.8.RELEASE环境。
首先,当Spring应用启动,通过SpringApplication的run方法调用refreshContext,进而执行refresh方法,初始化上下文容器。在这个过程中,非懒加载的bean实例化由finishBeanFactoryInitialization方法负责,特别是其内部的beanFactory.preInstantiateSingletons方法。
在默认非单例bean的getBean方法中,会调用AbstractAutowireCapableBeanFactory的createBean方法,这个方法会处理包括@Autowired在内的各种注解。特别关注AutowiredAnnotationBeanPostProcessor,它在获取元数据后,会进入beanFactory.resolveDependency来处理可能的多个依赖问题。
最后,DefaultListableBeanFactory的doResolveDependency方法通过反射机制,实现了属性注入。尽管这只是整个流程的概述,但深入源码可以帮助我们更好地理解Autowired的底层工作机制。
虽然这只是一个基本的梳理,但希望能为理解Spring的Autowired注入提供一些帮助。写这篇文章我投入了一周的时间,尽管过程艰辛,但如果觉得有价值,请给予鼓励,如点赞、收藏或转发。期待您的宝贵意见,让我们共同进步!
Spring源码 1.源码的下载与编译(by Gradle)
为了获得Spring源码并成功编译,我们首先需要下载源码。方法之一是使用Git clone命令,前提是我们已安装Git。但要注意,最新版本可能需要JDK ,若需使用JDK 8,推荐选择较旧版本。GitHub上,最新稳定版本为5.2..RELEASE,这是一个GA(General Availability)版本,表示正式发布的版本,适合在生产环境中使用。如果你使用的是JDK 8,建议选择分支版本。
如果GitHub服务不可用或下载速度缓慢,可以考虑从其他资源库下载。例如,可以使用csdn提供的资源链接支持作者,或者直接从gitee下载源码。
下载源码后,导入IDEA并选择Gradle工程。IDEA会自动加载,但可能遇到一些报错。如果报错提示“POM relocation to an other version number is not fully supported in Gradle”,需要将xml-apis的版本号更改为1.0.b2。这可以通过在项目的build.gradle文件中添加指定版本的代码来实现。
加载并配置新模块后,可以通过新建测试类来进行验证。在build.gradle中添加配置,并在模块中新建文件,包括一个启动类、一个配置类和一个实体类。记得刷新Gradle,进行测试。
测试结果应显示新建的实体类已被Spring容器加载。如果在测试中遇到问题,可以通过检查编译工具、编译器和项目结构来解决。确保使用本地Gradle路径、选择JDK 1.8版本,并在项目设置中选择正确的JDK版本。
Spring容器之refresh方法源码分析
Spring容器的核心接口BeanFactory与ApplicationContext之间的关系是继承,ApplicationContext扩展了BeanFactory的功能,提供了初始化环境、参数、后处理器、事件处理以及单例bean初始化等更全面的服务,其中refresh方法是Spring应用启动的入口点,负责整个上下文的准备工作。 让我们深入分析AbstractApplicationContext#refresh方法在启动过程中的具体操作:准备刷新阶段: 包括系统属性和环境变量的检查和准备。
获取新的BeanFactory: 初始化并解析XML配置文件。
customizeBeanFactory: 个性化BeanFactory设置,如覆盖定义、处理循环依赖等。
loadBeanDefinitions: 通过解析XML文件,创建BeanDefinition对象并注入到容器中。
填充BeanFactory功能: 设置classLoader、表达式语言处理器,增强Aware接口处理,添加AspectJ支持和默认系统环境bean等。
激活BeanFactory后处理器: 分为BeanDefinitionRegistryPostProcessor和BeanFactoryPostProcessor,分别进行BeanDefinition注册和BeanFactory增强。
注册BeanPostProcessors: 拦截Bean创建的后处理器,按优先级注册。
初始化其他组件: 包括MessageSource、ApplicationEventMulticaster和监听器。
初始化非惰性单例: 预先实例化这些对象。
刷新完成: 通知生命周期处理器并触发ContextRefreshedEvent。
以上是refresh方法在Spring应用启动流程中的关键步骤。以上内容仅为个人理解,如需更多信息,可参考CSDN博客链接。Spring源码--Bean工厂之getBean方法
Bean实例化与管理是Spring框架的核心功能之一,其中getBean方法作为获取Bean实例的主要手段,具有重要意义。接下来,我们将深入探讨getBean方法及其相关实现,以期更好地理解Spring Bean工厂的工作机制。
一、getBean方法
getBean方法是Spring容器对外提供的一种接口,用于根据指定的Bean名称获取对应Bean实例。该方法会根据配置信息和缓存机制,找到并返回所需的Bean。
二、doGetBean方法
doGetBean方法是getBean方法的内部实现,负责处理Bean的查找、创建和返回工作。其流程分为以下几个关键步骤:
1. getSingleton
若Bean是单例且已存在,则直接返回缓存的实例,无需重新创建。
2. createBean
若非单例或未找到缓存实例,将进入创建Bean的流程。此过程涉及实例化、属性填充和初始化三个主要步骤。
2.1 实例化
通过调用对应的构造函数或使用默认构造函数创建Bean实例。
2.2 三级缓存
在实例化后,新创建的Bean会首先存储于缓存中,随后被添加到Bean作用域的缓存中,以备后续使用。
2.3 属性填充
通过依赖注入或属性设置方法填充Bean的属性值,确保其具有所需的功能。
2.4 初始化
执行Bean的初始化方法,实现任何特定的初始化逻辑,如配置文件加载或数据库连接等。
三、流程图
为了更直观地展示getBean方法的执行流程,以下流程图详细展示了从查找至返回Bean实例的全过程,包括缓存操作、实例化、属性填充和初始化等关键步骤。
四、循环依赖示意图
在处理循环依赖时,Spring容器会采取特定策略以避免无限循环。以下示意图展示了两个单例Bean(A和B)之间循环依赖的处理过程,以及Spring如何通过延迟初始化等机制解决这一问题。
本文通过深入剖析getBean方法及其相关实现,旨在帮助开发者更好地理解Spring Bean工厂的工作机制。通过掌握这些关键概念与流程,可以更高效地利用Spring框架构建可维护且高性能的应用程序。
一文详解RocketMQ-Spring的源码解析与实战
火箭MQ与Spring Boot整合详解:源码解析与实战 本文将带你深入理解在Spring Boot项目中如何运用rocketmq-spring SDK进行消息收发,同时剖析其设计逻辑。此SDK是开源项目Apache RocketMQ的Spring集成,旨在简化在Spring Boot中的消息传递操作。 首先,我们介绍rocketmq-spring-boot-starter的基本概念。它本质上是一个Spring Boot启动器,以“约定优于配置”的理念提供便捷的集成。通过在pom.xml中引入依赖并配置基本的配置文件,即可快速开始使用。 配置rocketmq-spring-boot-starter时,需要关注以下两点:引入相关依赖和配置文件设置。生产者和消费者部分,我们将分别详细讲解操作步骤。 对于生产者,仅需配置名字服务地址和生产者组,然后在需要发送消息的类中注入RocketMQTemplate,最后使用其提供的发送方法,如同步发送消息。模板类RocketMQTemplate封装了RocketMQ的API,简化了开发流程。 消费者部分,同样在配置文件中配置,然后实现RocketMQListener,以便处理接收到的消息。源码分析显示,RocketMQAutoConfiguration负责启动消费者,其中DefaultRocketMQListenerContainer封装了RocketMQ的消费逻辑,确保支持多种参数类型。 学习rocketmq-spring的最佳路径包括:首先通过示例代码掌握基本操作;其次理解模块结构和starter设计;接着深入理解自动配置文件和RocketMQ核心API的封装;最后,通过项目实践,扩展自己的知识,尝试自定义简单的Spring Boot启动器。 通过这篇文章,希望你不仅能掌握rocketmq-spring在Spring Boot中的应用,还能提升对Spring Boot启动器和RocketMQ源码的理解。继续保持学习热情,探索更多技术细节!6. Spring源码篇之FactoryBean
FactoryBean是Spring提供的一个功能强大的小型工厂,用于灵活创建所需Bean。在框架与Spring整合时,尤其是Mybatis-plus中,通过注解可以自动生成Spring Bean,而FactoryBean的功能正是实现批量动态生成Bean。下面详细介绍FactoryBean的源码解析。
首先,我们来看看如何判断一个对象是否为FactoryBean。在Spring的实例化过程中,如果类实现了FactoryBean接口,则会被识别为FactoryBean。而获取FactoryBean时,通常在Bean名称前加上"&"符号。
接下来,我们深入分析FactoryBean的接口。
FactoryBean接口定义了如何创建Bean,包含两个主要方法:getObject和isInstance。getObject用于返回创建的Bean实例,isInstance用于判断一个对象是否由FactoryBean创建。
SmartFactoryBean是FactoryBean的子接口,它提供了额外的特性,允许决定是否提前实例化对象。
在实际使用中,FactoryBean的实例化过程较为关键。如果不希望立即实例化某个非懒加载单例Bean,则需要确保它未被识别为FactoryBean。例如,UserBean的实例化代码在正常情况下不会打印任何输出,表明并未实例化。而通过将UserBean实现为SmartFactoryBean,并使isEagerInit返回true,就能在控制台中观察到UserBean的实例化过程。
获取FactoryBean创建的Bean有多种方式。通过在Bean名称前加"&",可以获取到由getObject方法生成的Bean。此外,若需要获取FactoryBean本身,则可以使用多个"&"符号,Spring会循环遍历,直至获取到实际的Bean。
在Spring实例化完成后,通常会调用getObjectForBeanInstance方法来获取真正的Bean实例。这一过程包括了共享实例(sharedInstance)的引用和Bean名称的处理。最终,通过调用getObject方法,我们能够获取到由FactoryBean生成的实际Bean。
以Mybatis-plus中的MapperFactoryBean为例,说明了如何在实际项目中应用FactoryBean。MapperFactoryBean是Mybatis-plus提供的一个FactoryBean,用于自动注册Mapper接口为Spring Bean。
总结而言,FactoryBean在Spring中扮演着灵活创建和管理Bean的重要角色,尤其在需要动态生成或自定义Bean创建逻辑的场景中。通过理解其源码和使用方法,开发者可以更高效地整合各类框架与Spring,实现更为灵活和高效的系统构建。