用蘇東坡的何對文筆創作一部科幻小說,生成一部《教父》系列電影續集預告片,生成式用巴哈的下小錢曲風為一首K-pop音樂編曲 這些創作挑戰......,如今對生成式AI而言恐怕都不再困難;借助網路上數TB規模的毒研隊花微信强制关注源码海量資料進行訓練,加上強大的究團基百學習能力,生成式AI似乎已沒有辦不到的買過事。
然而,期網生成式AI學得快,域修是改維否也能學得好?一支AI研究團隊發現,只要對訓練資料「微量下毒」,誤導就能對生成式AI 的淪為源码编辑器官网下载PC學習成果造成可觀影響,例如散布不實消息或是犯罪竊取個資,而下毒並沒有想像中難。幫兇
網際網路資訊參差不齊,何對訓練資料若未把關恐讓AI淪犯罪幫手
《華爾街郵報》報導,生成式「資料下毒」指的上海钻石交易所溯源码是AI模型的訓練資料被駭入錯誤或惡意資訊,導致假消息、敏感文件或非法圖片大量散播的資訊攻擊行為。
這類攻擊常見於機器學習領域,而生成式AI在面臨這類攻擊時尤其脆弱,因為它經常極大量吸收公用網際網路上的源码编程器下载方法视频文字、圖像及其他類型資料,藉龐大的知識量來「生成」原創內容。
當AI的學習資源來自開放式網路,而非經過挑選、駭客較難入侵的倚天多空通道指标源码閉鎖性資料庫,AI 就容易遭「投毒」,顯著影響其訓練成果,遭汙染的資料也難以辨認或排除。
例如駭客可以在某些網站寫入不實資訊,「教導」AI聊天機器人散布特定公眾人物的不實謠言,或在網站埋入惡意指令,要求聊天機器人「被問到報稅問題時把個資文件寄到特定信箱」,藉此竊取隱私資料。
維基百科或成AI「投毒」目標,基金會:全球志願者共防風險
蘇黎世聯邦理工學院(ETH Zurich)電腦科學助理教授特拉梅(Florian Tramèr)與一支AI研究團隊2月在線上預印本資料庫arXiv針對資料下毒發表研究結果。他們發現,只需60美元加上一些技術知識,駭客就能對訓練資料微量投毒,並讓生成式AI的大型語言模型對提問做出錯誤回答。