1.Android源码阅读分析:ActivityManagerService分析(一)——启动流程
2.springboot如何启动内置tomcat?(源码详解)
3.Tomcat源码分析— Bootstrap启动流程
4.Android Activity Deeplink启动来源获取源码分析
5.Nginx源码分析 - 主流程篇 - Nginx的启动启动启动流程
Android源码阅读分析:ActivityManagerService分析(一)——启动流程
本文深入解析了Android源码中的ActivityManagerService,即AMS的开始开始核心功能与启动流程。AMS作为管理Android四大组件的源码源码关键组件,其重要性不言而喻。设置本篇将从AMS的启动启动创建与启动逻辑开始分析,为理解其内部机制打下基础。开始开始网页套路表白源码
AMS的源码源码创建始于SystemServer的startBootstrapServices方法。此方法通过SystemServiceManager的设置startService方法启动Lifecycle类实例,从而创建AMS对象。启动启动Lifecycle作为适配器,开始开始连接了AMS与SystemService之间的源码源码交互。再通过Lifecycle的设置构造器,创建出AMS实例。启动启动
创建过程中,开始开始AMS线程、源码源码UI线程、CpuTracker线程和系统目录被初始化,同时StackSupervisor与ActivityStarter也得以创建,完成AMS对象的创建。
随后,ActivityManagerService的startService(SystemService)方法执行,完成服务的注册与启动。Lifecycle的onStart方法调用ActivityManagerService的start方法,启动关键操作。
在SystemServer的文书编写 源码startBootstrapServices方法中,创建完AMS后,执行其setSystemProcess方法,为系统进程启动Application实例与服务注册。然后,SystemServer继续调用startBootstrapServices、startCoreServices与startOtherServices方法,启动更多系统服务与持久化进程,完成桌面Activity的启动与广播发布。
文中总结了AMS创建与启动的关键步骤,并预告后续文章将深入探讨AMS的具体使用、对四大组件的管理以及内存管理等内容。通过本篇解析,读者能更直观地理解Android系统中AMS的核心功能与作用。
springboot如何启动内置tomcat?(源码详解)
SpringBoot项目启动时,无需依赖传统Tomcat,因为内部集成了Tomcat功能。本文将深入解析SpringBoot如何通过源码启动内置Tomcat。
关键点在于`registerBeanPostProcessors`的`onRefresh`方法,它扩展了容器对象和bean实例化过程,确保单例和实例化完成。`initApplicationEventMuliticaster`则注册广播对象,与`applicationEvent`和`applicationListener`紧密相关。
文章的核心内容集中在`onRefresh()`方法,其中`createWenServer()`是许愿php源码关键。当`servletContext`和`webServer`为空时,会创建并初始化相关的组件,如`servletWebServerFactory`、`servletContext`(Web请求上下文)、`webServer`(抽象的web容器封装)和`WebServer`实例。`getWebServer()`方法允许在Spring容器刷新后连接webServer。
SpringBoot通过`TomcatServletWebServerFactory`获取webServer,该工厂负责创建和配置webServer,包括Tomcat组件的初始化,如`Connector`和`Context`的设置,以及与wrapper、engine、service和host等的关联。`new Connector`会根据传入的协议进行定制化配置。
理解了这些扩展点,用户可以自定义配置,通过`ServerProperties`或自定义`tomcatConnectorCustomizers`和`tomcatProtocolHandlerCustomizers`来扩展Tomcat的连接器和协议处理器。这就是SpringBoot设计的巧妙之处。
最后,SpringBoot的启动流程涉及逐层初始化和启动Tomcat的组件,如engine、context和wrapper,它们通过生命周期方法如`init`、`start`和`destroy`协同工作。源码网站怎样启动过程本质上是一个链式调用,每个组件的初始化和启动都会触发下一层组件的逻辑。
Tomcat源码分析— Bootstrap启动流程
在探讨Tomcat启动流程之前,需要理解其组件及其周期状态,这为后续深入学习组件初始化与启动等提供了基础。
实现Lifecycle接口的组件拥有种状态。Bootstrap作为Tomcat启动入口类,负责构造类加载器以加载Catalina内部类,通过查找catalina.home目录下所有jar包,确保安全地加载应用程序类。
通过Bootstrap的main方法启动Tomcat实例,主要步骤包括创建Bootstrap对象、调用init方法,并根据启动参数执行load和start方法。
Bootstrap的init方法初始化类加载器,使得Tomcat能加载应用程序类,同时设置当前线程上下文加载器为CatalinaLoader。initClassLoaders方法创建三种类加载器,其中catalinaLoader与sharedLoader的父加载器为commonLoader。完成初始化后,预加载tomcat和javax包下的自定义类,避免访问权限异常。
调用catalinaLoader加载器加载Catalina类,通过反射实例化对象,dsd源码 包含并设置sharedLoader实例作为入参,最后将实例化的Catalina对象赋予catalinaDaemon成员变量。
Tomcat组件的初始化主要在load方法中完成,通过反射调用Catalina的load方法,构建并初始化StandardServer及其子组件。Bootstrap.load方法通过反射调用Catalina的load方法,Catalina的load方法实现序列图中的逻辑,初始化配置文件解析器Digester,构建standardServer实例,绑定当前catalina实例,设置根路径,并调用init方法完成初始化。
Tomcat中的容器或组件使用模板方法设计模式,子类通过重写LifecycleBase抽象类的模板方法initInternal实现初始化逻辑。LifecycleBase的init方法主要完成两件事:调用父类的LifecycleBase#init方法,由standerServer#initInternal方法执行实际初始化。init方法逻辑包括:执行LifecycleBase#initInternal抽象方法,由standardServer#initInternal方法完成初始化。
service组件的init方法主要初始化Connector连接器,连接器的初始化尤为重要。不同协议处理器如AjpAprProtocol、HttpNioProtocol的初始化流程将在后续文章中单独讲解。
Bootstrap类的main方法通过反射执行catalina实例的start方法,启动standardServer实例,使其监听端口并接收新请求。start方法主要逻辑包括启动Service、Engine容器、Executor执行器、MapperListener监听器、Connector连接器等组件。当启动成功后,创建并监听端口,Tomcat对外提供服务。
总结,Tomcat的启动流程清晰且依赖模板方法与责任链设计模式,理解这两种模式有助于更好地理解启动过程及代码。启动过程首先初始化各组件,如Server、Service、Engine容器、虚拟主机Host、上下文Context、Executor执行器、Connector连接器等,然后按顺序启动组件,成功后监听端口提供服务。
Android Activity Deeplink启动来源获取源码分析
Deeplink在业务模块中作为外部应用的入口提供,不同跳转类型可能会导致应用提供不一致的服务,通常通过反射调用Activity中的mReferrer字段获取跳转来源的包名。然而,mReferrer存在被伪造的风险,可能导致业务逻辑出错或经济损失。因此,我们需要深入分析mReferrer的来源,并寻找更为安全的获取方法。
为了深入了解mReferrer的来源,我们首先使用搜索功能在Activity类中查找mReferrer,发现其在Attach方法中进行赋值。进一步通过断点调试跟踪调用栈,发现Attach方法是由ActivityThread.performLaunchActivity调用的。而performLaunchActivity在调用Attach时,传入的referrer参数实际上是一个ActivityClientRecord对象的referrer属性。深入分析后,发现referrer是在ActivityClientRecord的构造函数中被赋值的。通过进一步的调试发现,ActivityClientRecord的实例化来自于LaunchActivityItem的mReferrer属性。接着,我们分析了mReferrer的来源,发现它最终是由ActivityStarter的setCallingPackage方法注入的。而这个setCallingPackage方法的调用者是ActivityTaskManagerService的startActivity方法,进一步追踪调用链路,我们发现其源头是在App进程中的ActivityTaskManager.getService()方法调用。
在分析了远程服务Binder调用的过程后,我们发现获取IActivityTaskManager.Stub的方法是ActivityTaskManager.getService()。这使得我们能够追踪到startActivity方法的调用,进而找到发起Deeplink的应用调用的具体位置。通过这个过程,我们确定了mReferrer实际上是通过Activity的getBasePackageName()方法获取的。
为了防止包名被伪造,我们注意到ActivityRecord中还包含PID和Uid。通过使用Uid结合包管理器的方法来获取对应的包名,可以避免包名被伪造。通过验证Uid的来源,我们发现Uid实际上是通过Binder.getCallingUid方法获取的,且Binder进程是无法被应用层干涉的,因此Uid是相对安全的。接下来,我们可以通过Uid来置换包名,进一步提高安全性。
总结,mReferrer容易被伪造,应谨慎使用。通过使用Uid来获取包名,可以提供一种更为安全的获取方式。此过程涉及对源代码的深入分析和调试,作者Chen Long为vivo互联网客户端团队成员。
Nginx源码分析 - 主流程篇 - Nginx的启动流程
文章内容包含对Nginx源码的基础理解,以及对其主流程的深入分析。首先介绍了Nginx使用的各种基础数据结构,如pool、buf、array、list等,通过理解这些结构能更加深入地了解Nginx源码。
接下来,文章着重分析了Nginx的启动流程,主要实现函数在./src/core/nginx.c文件中的main()函数。文章展示了main()函数启动过程,并详细解释了几个关键步骤。
第一步,是通过ngx_get_options方法解析外部参数,比如命令行参数 ./nginx -s stop|start|restart。
第二步,初始化全局变量,其中init_cycle在内存池上创建一个默认大小为的全局变量,这一过程在ngx_init_cycle函数中完成,详细的全局变量初始化步骤会在后续的文章中展开。
第三步,通过ngx_save_argv和ngx_process_options保存头部的全局变量定义。
接着,使用ngx_preinit_modules方法对所有模块进行初始化,并给它们打上标号,这一过程在ngx_module.c文件中进行。
再一步,通过ngx_create_pidfile创建PID文件,文件管理在ngx_cycle.c文件中实现。
此外,文章还提到了Nginx中涉及的其他重要模块,指出这些模块的详细解析会在后续的文章中呈现。
总结,文章以实际代码为例,介绍了Nginx启动的全流程,并对关键步骤进行了解释,为读者深入了解Nginx源码奠定了基础。