【溯源码节点】【编译c源码】【教科源码】源码编译6

时间:2024-11-26 15:53:19 编辑:puppy源码 来源:装车发货源码

1.Net6编译 ready to run aot 反编译
2.简述android源代码的源码编译编译过程
3.如何用maven将java8写的代码编译为java6平台的
4.PostgreSQL源码学习笔记(6)-查询编译
5.Python写一个命令行工具(基于uncompile6的反编译小工具)

源码编译6

Net6编译 ready to run aot 反编译

       å¯ä»¥ä½¿ç”¨åç¼–译程序来创建实际的源代码

       å¦‚ 果您认为只有少数真正了解 IL 汇编语言的人才会看到并理解您的源代码,请牢记反编译并不会到此为止。我们可以使用反编译程序来创建实际的源代码。这些实用工具可以直接将 .NET 程序集反编译为如 C#、 Visual Basic .NET 或 C++ 这样的高级语言。

       è¿„ 今为止,从减轻部署和版本控制的负担,到自描述二进制数据所实现的丰富 IDE 功能,您可能已经熟悉了这些元数据丰富的 Microsoft_ .NET Framework 体系结构带来的所有好处。您可能不知道元数据的这种易用性带来的一个目前对于大多数开发人员来说还没有注意到的问题。为公共语言运行库 (CLR) 编写的程序更易于进行反相工程。不管怎么说,这并不是 .NET Framework 设计中的缺陷;它只是一种现代的、中间编译语言(Java 语言应用程序具有同样的特征)的现实状况。Java 和 .NET Framework 都使用内嵌在可执行代码中的丰富元数据:在 Java 中是字节码,在 .NET 中是 Microsoft 中间语言 (MSIL)。由于比二进制机器码要高级很多,可执行文件充满了可以轻松破解的信息。

简述android源代码的编译过程

       编译Android源代码是一个相对复杂的过程,涉及多个步骤和工具。源码编译下面我将首先简要概括编译过程,源码编译然后详细解释每个步骤。源码编译

       简要

       Android源代码的源码编译编译过程主要包括获取源代码、设置编译环境、源码编译溯源码节点选择编译目标、源码编译开始编译以及处理编译结果等步骤。源码编译

       1. 获取源代码:编译Android源代码的源码编译第一步是从官方渠道获取源代码。通常,源码编译这可以通过使用Git工具从Android Open Source Project(AOSP)的源码编译官方仓库克隆代码来完成。命令示例:`git clone /platform/manifest`。源码编译

       2. 设置编译环境:在编译之前,源码编译需要配置合适的源码编译编译环境。这通常涉及安装特定的源码编译操作系统(如Ubuntu的某些版本),安装必要的依赖项(如Java开发工具包和Android Debug Bridge),以及配置特定的编译c源码环境变量等。

       3. 选择编译目标:Android支持多种设备和配置,因此编译时需要指定目标。这可以通过选择特定的设备配置文件(如针对Pixel手机的`aosp_arm-eng`)或使用通用配置来完成。选择目标后,编译系统将知道需要构建哪些组件和变种。

       4. 开始编译:设置好环境并选择了编译目标后,就可以开始编译过程了。在源代码的根目录下,可以使用命令`make -jN`来启动编译,其中`N`通常设置为系统核心数的1~2倍,以并行处理编译任务,加快编译速度。编译过程中,系统将根据Makefile文件和其他构建脚本,自动下载所需的预构建二进制文件,并编译源代码。教科源码

       5. 处理编译结果:编译完成后,将在输出目录(通常是`out/`目录)中生成编译结果。这包括可用于模拟器的系统镜像、可用于实际设备的OTA包或完整的系统镜像等。根据需要,可以进一步处理这些输出文件,如打包、签名等。

       在整个编译过程中,还可能遇到各种依赖问题和编译错误,需要根据错误信息进行调试和解决。由于Android源代码庞大且复杂,完整的编译可能需要数小时甚至更长时间,因此耐心和合适的硬件配置也是成功编译的重要因素。

如何用maven将java8写的代码编译为java6平台的

       ã€€ã€€åœ¨ä¸€èˆ¬çš„Java应用开发过程中,开发人员使用Java的方式比较简单。打开惯用的IDE,编写Java源代码,再利用IDE提供的功能直接运行Java 程序就可以了。这种开发模式背后的过程是:开发人员编写的是Java源代码文件(.java),IDE会负责调用Java的编译器把Java源代码编译成平台无关的字节代码(byte code),以类文件的形式保存在磁盘上(.class)。Java虚拟机(JVM)会负责把Java字节代码加载并执行。Java通过这种方式来实现其“编写一次,到处运行(Write once, run anywhere)” 的目标。Java类文件中包含的字节代码可以被不同平台上的JVM所使用。Java字节代码不仅可以以文件形式存在于磁盘上,也可以通过网络方式来下载,还可以只存在于内存中。JVM中的类加载器会负责从包含字节代码的字节数组(byte[])中定义出Java类。在某些情况下,可能会需要动态的生成 Java字节代码,或是对已有的Java字节代码进行修改。这个时候就需要用到本文中将要介绍的相关技术。首先介绍一下如何动态编译Java源文件。

       ã€€ã€€åŠ¨æ€ç¼–译Java源文件

       ã€€ã€€åœ¨ä¸€èˆ¬æƒ…况下,开发人员都是在程序运行之前就编写完成了全部的Java源代码并且成功编译。对有些应用来说,Java源代码的内容在运行时刻才能确定。这个时候就需要动态编译源代码来生成Java字节代码,再由JVM来加载执行。典型的场景是很多算法竞赛的在线评测系统(如PKU JudgeOnline),允许用户上传Java代码,由系统在后台编译、运行并进行判定。在动态编译Java源文件时,使用的做法是直接在程序中调用Java编译器。

       ã€€ã€€JSR 引入了Java编译器API。如果使用JDK 6的话,可以通过此API来动态编译Java代码。比如下面的代码用来动态编译最简单的Hello World类。该Java类的代码是保存在一个字符串中的。

       ã€€ã€€ public class CompilerTest {

       ã€€ã€€ public static void main(String[] args) throws Exception {

       ã€€ã€€ String source = "public class Main { public static void main(String[] args) { System.out.println(\"Hello World!\");} }";

       ã€€ã€€ JavaCompiler compiler = ToolProvider.getSystemJavaCompiler();

       ã€€ã€€ StandardJavaFileManager fileManager = compiler.getStandardFileManager(null, null, null);

       ã€€ã€€ StringSourceJavaObject sourceObject = newCompilerTest.StringSourceJavaObject("Main", source);

       ã€€ã€€ Iterable< extends JavaFileObject> fileObjects = Arrays.asList(sourceObject);

       ã€€ã€€ CompilationTask task = compiler.getTask(null, fileManager, null,null, null, fileObjects);

       ã€€ã€€ boolean result = task.call();

       ã€€ã€€ if (result) {

       ã€€ã€€ System.out.println("编译成功。");

       ã€€ã€€ }

       ã€€ã€€ }

       ã€€ã€€

       ã€€ã€€ static class StringSourceJavaObject extends SimpleJavaFileObject {

       ã€€ã€€

       ã€€ã€€ private String content = null;

       ã€€ã€€ public StringSourceJavaObject(String name, String content) ?throwsURISyntaxException {

       ã€€ã€€ super(URI.create("string:///" + name.replace('.','/') + Kind.SOURCE.extension), Kind.SOURCE);

       ã€€ã€€ this.content = content;

       ã€€ã€€ }

       ã€€ã€€

       ã€€ã€€ public CharSequence getCharContent(boolean ignoreEncodingErrors) ?throws IOException {

       ã€€ã€€ return content;

       ã€€ã€€ }

       ã€€ã€€ }

       ã€€ã€€ }

       ã€€ã€€å¦‚果不能使用JDK 6提供的Java编译器API的话,可以使用JDK中的工具类com.sun.tools.javac.Main,不过该工具类只能编译存放在磁盘上的文件,类似于直接使用javac命令。

       ã€€ã€€å¦å¤–一个可用的工具是Eclipse JDT Core提供的编译器。这是Eclipse Java开发环境使用的增量式Java编译器,支持运行和调试有错误的代码。该编译器也可以单独使用。Play框架在内部使用了JDT的编译器来动态编译Java源代码。在开发模式下,Play框架会定期扫描项目中的Java源代码文件,一旦发现有修改,会自动编译 Java源代码。因此在修改代码之后,刷新页面就可以看到变化。使用这些动态编译的方式的时候,需要确保JDK中的tools.jar在应用的 CLASSPATH中。

       ã€€ã€€ä¸‹é¢ä»‹ç»ä¸€ä¸ªä¾‹å­ï¼Œæ˜¯å…³äºŽå¦‚何在Java里面做四则运算,比如求出来(3+4)*7-的值。一般的做法是分析输入的运算表达式,自己来模拟计算过程。考虑到括号的存在和运算符的优先级等问题,这样的计算过程会比较复杂,而且容易出错。另外一种做法是可以用JSR 引入的脚本语言支持,直接把输入的表达式当做JavaScript或是JavaFX脚本来执行,得到结果。下面的代码使用的做法是动态生成Java源代码并编译,接着加载Java类来执行并获取结果。这种做法完全使用Java来实现。

       ã€€ã€€ private static double calculate(String expr) throws CalculationException {

       ã€€ã€€ String className = "CalculatorMain";

       ã€€ã€€ String methodName = "calculate";

       ã€€ã€€ String source = "public class " + className

       ã€€ã€€ + " { public static double " + methodName + "() { return " + expr +"; } }";

       ã€€ã€€ //省略动态编译Java源代码的相关代码,参见上一节

       ã€€ã€€ boolean result = task.call();

       ã€€ã€€ if (result) {

       ã€€ã€€ ClassLoader loader = Calculator.class.getClassLoader();

       ã€€ã€€ try {

       ã€€ã€€ Class<?> clazz = loader.loadClass(className);

       ã€€ã€€ Method method = clazz.getMethod(methodName, new Class<?>[] { });

       ã€€ã€€ Object value = method.invoke(null, new Object[] { });

       ã€€ã€€ return (Double) value;

       ã€€ã€€ } catch (Exception e) {

       ã€€ã€€ throw new CalculationException("内部错误。");

       ã€€ã€€ }

       ã€€ã€€ } else {

       ã€€ã€€ throw new CalculationException("错误的表达式。");

       ã€€ã€€ }

       ã€€ã€€ }

       ã€€ã€€ä¸Šé¢çš„代码给出了使用动态生成的Java字节代码的基本模式,即通过类加载器来加载字节代码,创建Java类的对象的实例,再通过Java反射API来调用对象中的方法。

       ã€€ã€€Java字节代码增强

       ã€€ã€€Java 字节代码增强指的是在Java字节代码生成之后,对其进行修改,增强其功能。这种做法相当于对应用程序的二进制文件进行修改。在很多Java框架中都可以见到这种实现方式。Java字节代码增强通常与Java源文件中的注解(annotation)一块使用。注解在Java源代码中声明了需要增强的行为及相关的元数据,由框架在运行时刻完成对字节代码的增强。Java字节代码增强应用的场景比较多,一般都集中在减少冗余代码和对开发人员屏蔽底层的实现细节上。用过JavaBeans的人可能对其中那些必须添加的getter/setter方法感到很繁琐,并且难以维护。而通过字节代码增强,开发人员只需要声明Bean中的属性即可,getter/setter方法可以通过修改字节代码来自动添加。用过JPA的人,在调试程序的时候,会发现实体类中被添加了一些额外的 域和方法。这些域和方法是在运行时刻由JPA的实现动态添加的。字节代码增强在面向方面编程(AOP)的一些实现中也有使用。

PostgreSQL源码学习笔记(6)-查询编译

       查询模块是数据库与用户进行交互的模块,允许用户使用结构化查询语言(SQL)或其它高级语言在高层次上表达查询任务,美易源码并将用户的查询命令转化成数据库上的操作序列并执行。查询处理分为查询编译与查询执行两个阶段:

       当PostgreSQL的后台进程Postgres接收到查询命令后,首先传递到查询分析模块,进行词法,语法与语义分析。用户的查询命令,如SELECT,CREATE TABLE等,会被构建为原始解析树,然后交给查询重写模块。查询重写模块根据解析树及参数执行解析分析及规则重写,得到查询树,最后输入计划模块得到计划树。

       整个查询编译的函数调用流程包括查询分析、查询重写与计划生成三个阶段。查询分析涉及词法分析、绝地sys源码语法分析与语义分析,分别由Lex与Yacc工具完成。词法分析识别输入的SQL命令中的模式,语法分析找出这些模式的组合,形成解析树。出于与用户交互的考虑,语义分析与重写放在另一个函数处理,以避免在输入语句时立即执行事务操作。Lex与Yacc是词法与语法分析工具,分别通过正则表达式解析与语法结构定义,生成用于分析的C语言代码。

       查询分析由pg_parse_query函数与pg_analyze_and_rewrite函数完成。pg_parse_query处理词法与语法分析,而语义分析与重写在pg_analyze_and_rewrite函数中进行。语义分析需要访问数据库系统表,以检查命令中的表或字段是否存在,以及聚合函数的适用性。

       查询重写核心在于规则系统,存储在pg_rewrite系统表中。规则系统由一系列重写规则组成,包括创建规则、删除规则以及利用规则进行查询重写三个操作。规则系统提供定义、删除规则以及利用规则优化查询的功能。PG中实现多种查询优化策略,包括谓语下滑、WHERE语句合并等,通过动态规划与遗传算法选择代价最小的执行方案。

       查询规划的总体过程包括预处理、生成路径和生成计划三个阶段。预处理阶段消除冗余条件、减少递归层数与简化路径生成。提升子链接与子查询是预处理中的关键步骤,通过将子查询提升至与父查询相同的优化等级,提高查询效率。提升子链接与子查询的函数包括pull_up_sublinks与pull_up_subqueries。

       在路径生成阶段,优化器检查MIN/MAX聚集函数的存在与索引条件,生成通过索引扫描获得最大值或最小值的路径。表达式预处理由preprocess_expression函数完成,包括目标链表、WHERE语句、HAVING谓语等的处理。HAVING子句的提升或保留取决于是否包含聚集条件。删除冗余信息以优化路径生成。

       生成路径的入口函数query_planner负责找到从一组基本表到最终连接表的最高效路径。路径生成算法包括动态规划与遗传算法,分别解决路径选择与状态传递问题。路径生成流程涉及make_one_rel函数,最终生成最优路径并转换为执行计划。

       在得到最优路径后,优化器根据路径生成对应的执行计划。创建计划的入口函数create_plan提供顺序扫描、采样扫描、索引扫描与TID扫描等计划生成。整理计划树函数set_plan_references负责最后的细节调整,优化执行器执行效率。代价估算考虑磁盘I/O与CPU时间,根据统计信息与查询条件估计路径代价。

       查询编译与规划是数据库性能的关键环节。PostgreSQL通过高效的查询分析、重写与规划,生成最优执行计划,显著提高查询执行效率。动态规划与遗传算法等优化策略的应用,确保了查询处理的高效与灵活性。

Python写一个命令行工具(基于uncompile6的反编译小工具)

       在处理没有源码的python包时,使用uncompile6进行反编译能提供便利。但面对大量包文件,逐一操作显得繁琐。为此,自建命令行工具以一键反编译指定目录下的pyc文件,成为更高效的解决方案。

       通过使用sys.argv获取命令行输入,例如"uncompile6 -o xxx.py xxx.pyc",解析参数为['uncompile6 ', '-o', 'xxx.py', 'xxx.pyc'],实现对多个pyc文件的批量处理。

       在制作安装包过程中,entry_points属性至关重要。它定义了命令名称(decompile_pyc)和对应的main函数入口(decompile包下decompile_pyc.py的main函数),确保命令行命令能正确执行。

       在setup.py目录下,执行"sdist"生成tar.gz文件,"bdist_wheel"生成whl文件,完成安装包的制作。安装完成后,直接在命令行输入相应的命令,即可实现一键反编译。

       关于上传包到pypi的步骤,官方有详细说明,这里不再赘述,确保包的发布符合标准。