1.如何计算小数的进制原码和补码?
2.负数的原码和补码分别是什么?
3.äºè¿å¶çåç ãè¡¥ç ãåç 详解
如何计算小数的原码和补码?
一、小数部分的数负原码和补码可以表示为两个复数的分子和分母,然后计算二进制小数系统,源的进根据下面三步的码负码方法就会找出小数源代码和补码的百位形式。/=B/2^6=0.B
-/=B/2^7=0.B
二、制代将十进制十进制原始码和补码转换成二进制十进制,进制下载源码的软件然后根据下面三步的数负方法求出十进制源代码和补码形式。一个
0.=0.B
0.=0.B
三、源的进二进制十进制对应的码负码原码和补码
[/]源代码=[0.B]源代码=B
[-/]源代码=[0.b]源代码=B
[0.]原码=[0.b]原码=B
[0.]源代码=[0.B]源代码=B
[/]补体=[0.B]补体=B
[-/]补体=[0.b]补体=B
[0.]补码=[0.b]补码=B
[0.]补体=[0.B]补体=B
扩展资料:
原码、逆码、制代补码的进制使用:
在计算机中对数字编码有三种方法,对于正数,数负这三种方法返回的源的进结果是相同的。
+1=[原码]=[逆码]=[补码]
对于这个负数:
对计算机来说,码负码加、制代减、乘、除是最基本的运算。有必要使设计尽可能简单。冒险岛源码如何架设如果计算机能够区分符号位,那么计算机的基本电路设计就会变得更加复杂。
负的正数等于正的负数,2-1等于2+(-1)所以这个机器只做加法,不做减法。符号位参与运算,只保留加法运算。
(1)原始代码操作:
十进制操作:1-1=0。
1-1=1+(-1)=[源代码]+[源代码]=[源代码]=-2。小区业主信息统计源码
如果用原代码来表示,让符号位也参与计算,对于减法,结果显然是不正确的,所以计算机不使用原代码来表示一个数字。
(2)逆码运算:
为了解决原码相减的问题,引入了逆码。
十进制操作:1-1=0。
1-1=1+(-1)=[源代码]+[源代码]=[源代码]+[源代码]=[源代码]=[源代码]=-0。七星棋牌源码湖南
使用反减法,结果的真值部分是正确的,但在特定的值“0”。虽然+0和-0在某种意义上是相同的,但是0加上符号是没有意义的,[源代码]和[源代码]都代表0。
(3)补充操作:
补语的出现解决了零和两个码的符号问题。
十进制运算:1-1=0。
1-1=1+(-1)=[原码]+[原码]=[补码]+[补码]=[补码]=[原码]=0。PHP搜索导航页源码
这样,0表示为[],而之前的-0问题不存在,可以表示为[]-。
(-1)+(-)=[源代码]+[源代码]=[补充]+[补充]=[补充]=-。
-1-的结果应该是-。在补码操作的结果中,[补码]是-,但是请注意,由于-0的补码实际上是用来表示-的,所以-没有原码和逆码。(-的补码表[补码]计算出的[原码]是不正确的)。
负数的原码和补码分别是什么?
以补码为例,有两种计算方法求原码:算法1:
补码=原码取反再加1的逆运算。
是补码,应先减去1变为反码,得;
由反码取得源码即除符号位外其他为按位取反,得,即十进制数的-。
算法2:
负数补码速算法,由最低位(右)向高位(左)查找到第一个1与符号位之间的所有数字按位取反的逆运算
是补码,符号位与最后一个1之间的所有数字按位取反,得
扩展资料
计算机系统中的补码和原码:
在计算机系统中,数值一律用补码来表示和存储。原因在于,使用补码,可以将符号位和数值域统一处理;同时,加法和减法也可以统一处理。此外,补码与原码相互转换,其运算过程是相同的,不需要额外的硬件电路。
原码(true form)是一种计算机中对数字的二进制定点表示方法。原码表示法在数值前面增加了一位符号位(即最高位为符号位):正数该位为0,负数该位为1(0有两种表示:+0和-0),其余位表示数值的大小。原码不能直接参加运算,可能会出错。
例如数学上,1+(-1)=0,而在二进制中+=,换算成十进制为-2。显然出错了。
参考资料:
百度百科-补码äºè¿å¶çåç ãè¡¥ç ãåç 详解
计ç®æºä¸ï¼å¹¶æ²¡æåç ååç ï¼åªæ¯ä½¿ç¨è¡¥ç ï¼ä»£è¡¨æ£è´æ°ã
使ç¨è¡¥ç çæä¹ï¼å¯ä»¥æåæ³æè´æ°ï¼è½¬æ¢ä¸ºå æ³è¿ç®ãä»èç®å计ç®æºç硬件ã
ï¼ï¼ï¼ï¼ï¼ï¼ï¼ï¼ï¼ï¼ï¼ï¼
æ¯å¦é表ï¼æ¶é转ä¸åï¼å¨ææ¯ å°æ¶ã
åæ¨ 3 å°æ¶ï¼å¯ä»¥ç¨æ£æ¨ 9 å°æ¶ä»£æ¿ã
9ï¼å°±ç§°ä¸ºï¼3 çè¡¥æ°ã
计ç®æ¹æ³ï¼ï¼3 = 9ã
对äºåéï¼åæ¨ X åï¼å°±å¯ä»¥ç¨æ£æ¨ ï¼X 代æ¿ã
ï¼ï¼ï¼ï¼ï¼ï¼ï¼ï¼ï¼ï¼ï¼ï¼
å¦æï¼éå®äºä¸¤ä½åè¿å¶æ° (0~)ï¼å¨æå°±æ¯ ã
é£ä¹ï¼åä¸ï¼å°±å¯ä»¥ç¨ + 代æ¿ã
ããï¼1 =
ãã + = (1)
忽ç¥è¿ä½ï¼åªå两ä½æ°ï¼è¿ä¸¤ç§ç®æ³ï¼ç»æå°±æ¯ç¸åçã
äºæ¯ï¼ å°±æ¯ ï¼1 çè¡¥æ°ã
å ¶å®è´æ°çè¡¥æ°ï¼å¤§å®¶å¯ä»¥èªå·±æ±ï¼
æ±åºäºè´æ°çè¡¥æ°ï¼å°±å¯ç¨å æ³ï¼ä»£æ¿åæ³äºã
ï¼ï¼ï¼ï¼ï¼ï¼ï¼ï¼ï¼ï¼ï¼ï¼
计ç®æºä¸ä½¿ç¨äºè¿å¶ï¼è¡¥æ°ï¼å°±æ¹ç§°ä¸ºãè¡¥ç ãã
常ç¨çå «ä½äºè¿å¶æ¯ï¼ ~ ã
å®ä»¬ä»£è¡¨äºåè¿å¶ï¼0~ï¼å¨æå°±æ¯ ã
é£ä¹ï¼ï¼1ï¼å°±å¯ä»¥ç¨ = 代æ¿ã
æ以ï¼ï¼1 çè¡¥ç ï¼å°±æ¯ = ã
åçï¼ï¼2 çè¡¥ç ï¼å°±æ¯ = ã
继ç»ï¼ï¼3 çè¡¥ç ï¼å°±æ¯ = ã
ããã
æåï¼ï¼ï¼è¡¥ç æ¯ = ã
计ç®å ¬å¼ï¼è´æ°çè¡¥ç ï¼ï¼è¿ä¸ªè´æ°ã
æ£æ°ï¼ç´æ¥è¿ç®å³å¯ï¼ä¸éè¦æ±è¡¥ç ã
ãããä¹å¯ä»¥è¯´ï¼æ£æ°æ¬èº«å°±æ¯è¡¥ç ã
ï¼ï¼ï¼ï¼ï¼ï¼ï¼ï¼ï¼ï¼ï¼ï¼
è¡¥ç çåºç¨å¦ï¼ 7ï¼3 = 4ã
ç¨è¡¥ç ç计ç®è¿ç¨å¦ä¸ï¼
ãããã7 çè¡¥ç ï¼
ãããï¼3çè¡¥ç ï¼
ï¼ï¼ç¸å ï¼ï¼ï¼ï¼ï¼ï¼ï¼ï¼ï¼ï¼ï¼ï¼ï¼
ãããå¾ï¼ãã(1) = 4 çè¡¥ç
èå¼è¿ä½ï¼åªä¿çå «ä½ï¼ä½ä¸ºç»æå³å¯ã
è¿å°±æ¯ï¼ä½¿ç¨è¡¥ç ï¼å æ³å°±ä»£æ¿äºåæ³ã
æ以ï¼å¨è®¡ç®æºä¸ï¼æä¸ä¸ªå æ³å¨ï¼å°±å¤ç¨äºã
åç ååç ï¼é½æ²¡æè¿ç§åè½ã
ï¼ï¼ï¼ï¼ï¼ï¼ï¼ï¼ï¼ï¼ï¼ï¼
åç ååç ï¼æ¯«æ ç¨å¤ã计ç®æºä¸ï¼æ ¹æ¬å°±æ²¡æå®ä»¬ã