【跨年源码】【优秀的js源码阅读】【vue2.7源码解析】kubernetes源码限流

2024-11-28 22:37:14 来源:同花顺文件源码 分类:焦点

1.在离线混部-Koordinator Cpu Burst 特性 源码调研
2.在家庭私有云上实现 K8S 部署 kong 网关和 konga 管理后台
3.Kubernetes OOM 和 CPU Throttling 问题
4.开源免费的源码服务网格 Service Mesh
5.k8s-服务网格实战-入门Istio
6.kubernetes网络和CNI简介

kubernetes源码限流

在离线混部-Koordinator Cpu Burst 特性 源码调研

       在离线混部场景下,Koordinator引入了Cpu Burst特性来优化CPU资源管理。限流这个特性源自Linux内核的源码CPU Burst技术,旨在处理突发的限流CPU使用需求,减少CPU限流带来的源码影响。cgroups的限流跨年源码参数如cpu.share、cpu.cfs_quota_us和cpu.cfs_burst,源码分别控制了CPU使用率、限流配额和突发缓冲效果。源码在Kubernetes中,限流资源请求(requests.cpu)和限制(limits.cpu)通过这些参数来实现动态调整,源码以保证容器间公平的限流CPU分配。

       对于资源调度,源码Kubernetes的限流Bandwidth Controller通过时间片限制进程的CPU消耗,针对延迟敏感业务,源码如抖音视频服务,通过设置合理的CPU limits避免服务质量下降,同时也考虑资源的高效利用。然而,常规的限流策略可能导致容器部署密度降低,因为时间片间隔可能不足以应对突发的CPU需求。CPU Burst技术正是为了解决这个问题,通过收集未使用的CPU资源,允许在突发时使用,从而提高CPU利用率并减少throttled_time。

       在Koordinator的配置中,通过configMap可以调整CPU Burst的百分比,以及在负载过高时的调整策略。例如,当CPU利用率低于阈值时,允许动态扩展cfs_quota,以应对突发的CPU使用。源码中,会根据节点负载状态和Pod的QoS策略来调整每个容器的CPU Burst和cfs_quota。

       总的来说,Cpu Burst特性适用于资源利用率不高且短作业较多的场景,能有效提升核心业务的CPU资源使用效率,同时对相邻容器的影响较小。在某些情况下,结合cpuset的核绑定和NUMA感知调度可以进一步减少CPU竞争。理解并灵活运用这些技术,有助于优化云计算环境中的资源分配和性能管理。

在家庭私有云上实现 K8S 部署 kong 网关和 konga 管理后台

       Kong是一个开源的API网关框架,它具备众多高级功能,包括流量控制、API安全、服务发现、熔断、优秀的js源码阅读限流等,旨在帮助开发者构建可扩展、可靠和安全的微服务应用程序。

       以下是Kong的一些主要特点:

       简单易用:Kong提供了一个简单的命令行接口和易于使用的配置文件系统,使得部署和管理API网关变得非常简单。

       多协议支持:Kong支持多种常见的HTTP/HTTPS协议,如HTTP、HTTPS、WebSocket等。

       灵活的配置:Kong允许用户根据需要自定义各种参数,例如限流、熔断、日志记录等。

       高度可扩展:Kong可以轻松地集成其他流行的服务发现、负载均衡和监控工具,例如Consul、Eureka和Prometheus等。

       社区支持:Kong是由一个活跃的开源社区开发的,这意味着用户可以获得很好的技术支持和文档资源。

       在K8S中部署Kong的步骤如下:

       1、如果还没有命名空间,先创建。

       2、在k8s的master节点进入任意目录新建kong-migrations.yaml、kong.yaml、konga.yaml三个文件,把如下信息粘贴进去:

       注意:kong-migrations.yaml这个POD是专门用来初始化数据库的,执行一次之后就可以删除了。

       注意:kong.yaml这里需要注意一下,我是把kong的端口映射到宿主机的和,确保你宿主机这两个常用端口没有被占用,还有个问题是k8s的nodePort端口范围为:-,配置文件直接写和,会报错,需要改下配置。

       找到kube-apiserver.yaml文件的绝对路径,其路径为"/etc/kubernetes/manifests/kube-apiserver.yaml",并添加参数"- --service-node-port-range=1-",如下所示:

       不需要重启,过一会自动就生效了。

       注意:konga.yaml这里我使用了NFS把konga的文件映射出来,这样当Pod被销毁或者被调度到其他节点之后数据都不会丢失,你如果还没有安装NFS服务器可以参考我之前写的“在家庭私有云上实现 Docker 部署 NFS 网络文件系统”这篇文章。

       执行kubeclt命令。

       我们打开k8s-dashboard管理后台瞄一眼:

       然后在浏览器输入master节点的ip+端口:打开konga管理后台,输入如下信息,让konga管理kong的vue2.7源码解析路由配置:

       连接成功:

       在konga管理后台验证成功后,如何验证kong网关是否能够正常提供服务呢?首先拿出我的域名,这个域名没有备案,但是我把它解析到k8s的master节点的内网ip,仅仅做内网使用是没问题的。

       在konga管理后台点开服务管理,新建服务,填入如下信息:

       接着点开Routes选项卡,配置通过 konga.azyu.cc访问:

       点击保存,之前我们是通过IP加端口的方式访问konga管理后台,现在可以通过域名,在浏览器输入 konga.azyu.cc,大功告成!

Kubernetes OOM 和 CPU Throttling 问题

       使用 Kubernetes 时,内存不足(OOM)错误和 CPU 限制(Throttling)是云应用程序中资源处理的主要难题。为什么会出现这种情况呢?

       云应用程序中的 CPU 和内存要求变得越来越重要,因为它们与您的云成本直接相关。

       通过配置 limits 和 requests,您可以确定 pod 如何分配内存和 CPU 资源,从而避免资源短缺并调整云成本。

       那么,如何监控 Pod 是否快要发生 OOM 或 CPU 被限制了呢?

       Pod 中的每个容器都需要内存才能运行。

       Kubernetes limits 是在 Pod 定义或 Deployment 定义中为每个容器设置的。

       所有现代 Unix 系统都有一种方法可以杀死进程,以此回收内存(当没有空闲内存时,只能杀进程了)。这个错误将被标记为 错误码或 OOMKilled。

       退出代码 表示该进程使用的内存超过允许的数量,必须被 OS 终止。

       这是 Linux 中的一项功能,内核为系统中运行的进程设置 oom_score 值。此外,它还允许设置一个名为 oom_score_adj 的值,Kubernetes 使用该值来实现服务质量。它还具有 OOM Killer,它将检查进程并终止那些使用过多内存(比如申请了超过 limits 限制的数量的内存)的进程。

       请注意,在 Kubernetes 中,进程可能会达到以下任何限制:内存过量分配。

       限制(limits)可以高于请求(requests),因此所有限制的总和可以高于节点容量。这称为过量分配,并且很常见。实际上,如果所有容器使用的内存多于 request 的内存,则可能会耗尽节点中的内存。这通常会导致一些 pod 死亡,以释放一些内存。支付系统源码开发流程

       在 Prometheus 生态中,使用 node-exporter 时,有一个名为 node_vmstat_oom_kill 的指标。跟踪 OOM 终止何时发生非常重要,但您可能希望在此类事件发生之前抢占先机并了解其情况。

       我们更希望的是,检查进程与 Kubernetes limits 的接近程度:

       CPU 限制(throttling)是一种当进程即将达到某些资源限制时减慢速度的行为。与内存情况类似,这些限制可能是:

       想想下面的类比。我们有一条高速公路,交通流量如下:

       这里的 throttling 被表示为交通拥堵:最终,所有进程都会运行,但一切都会变慢。

       CPU 在 Kubernetes 中通过shares 进行处理。每个 CPU 核心被分为 个 shares,然后使用 Linux 内核的 cgroups(control groups)功能在运行的所有进程之间进行划分。

       如果 CPU 可以处理当前所有进程,则无需执行任何操作。如果进程使用超过 % 的 CPU,shares 机制就要起作用了。与任何 Linux 内核一样,Kubernetes 使用 CFS(Completely Fair Scheduler)机制,因此拥有更多份额的进程将获得更多的 CPU 时间。

       与内存不同,Kubernetes 不会因为限流而杀死 Pod。

       You can check CPU stats in /sys/fs/cgroup/cpu/cpu.stat

       正如我们在 limits 和 requests 文章中看到的,当我们想要限制进程的资源消耗时,设置 limits 或 requests 非常重要。尽管如此,请注意不要将总 requests 设置为大于实际 CPU 大小,每个容器都应该有保证的 CPU。

       您可以检查进程与 Kubernetes limits 的接近程度:

       如果我们想要跟踪集群中发生的限制量,cadvisor 提供了 container_cpu_cfs_throttled_periods_total 和 container_cpu_cfs_periods_total 两个指标。通过这两个指标,您可以轻松计算所有 CPU 周期内的限制百分比。

       Limits 是在节点中设置资源最大上限的一种方法,但需要谨慎对待,因为您可能最终会受到限制或终止进程。

       准备好应对驱逐

       通过设置非常低的请求,您可能认为这将为您的进程授予最少的 CPU 或内存。但 kubelet 会首先驱逐那些使用率高于请求的 Pod,因此就相当于您将这些进程标记为最先被杀死的!

       如果您需要保护特定 Pod 免遭抢占(当 kube-scheduler 需要分配新 Pod 时),请为最重要的进程分配 Priority Classes。

       Throttling 是一个无声的敌人

       设置不切实际的 limits 或过度使用,您可能没有意识到您的进程正在受到限制并且性能受到影响。主动监控 CPU 用量,监控主机源码怎么查看了解确切的容器和命名空间层面的限制,及时发现问题非常重要。

       下面这张图,比较好的解释了 Kubernetes 中 CPU 和内存的限制问题。供参考:

       本文翻译自: sysdig.com/blog/trouble...

开源免费的服务网格 Service Mesh

       服务网格是一种微服务管理的软件基础设施,旨在简化和提升服务间通信的可靠性和可扩展性。其核心在于Sidecar模式,分离服务的通信功能与应用业务,Sidecar代理负责服务间的通信,业务代码仅与其他进程的代理通信。

       Conduit是轻量级、高性能且易于理解和使用的ServiceMesh框架,与Kubernetes集成,提供服务发现、负载均衡、熔断和限流功能。它使用Rust语言开发数据平面,Go语言开发控制平面,内存占用极小。

       Consul Connect是基于Consul的服务网格,支持服务注册、发现、负载均衡、路由、熔断等功能,提供应用间双向TLS连接,侧重应用安全。

       Envoy是Lyft开发的高性能服务网格框架,适用于大规模应用,作为数据层代理,负责服务网格中应用间流量管理。

       Istio是一个强大的开源服务网格,提供统一的路径保护、连接和监控服务,无需修改服务代码即可实现负载平衡、服务间身份验证和监控。

       Kuma是Kong开发的开源服务网格框架,提供跨集群全局控制平面、多环境服务网格、安全性和策略等功能,支持Kubernetes和虚拟机。

       Linkerd是Kubernetes服务网格的开源解决方案,提供服务间通信、故障处理、负载平衡和安全性功能,以轻量级、安全优先为特点。

       Maesh是Containous开发的开源服务网格框架,基于Traefik的反向代理和负载均衡器,提供简单且易于使用的服务网格,增强服务间连通性。

       Open Service Mesh由Microsoft开发的开源框架,支持最新服务网格标准SMI,提供简单易用的服务网格功能。

k8s-服务网格实战-入门Istio

       进入服务网格系列,前面已讲解基本知识,但企业中存在复杂应用调用关系,需要管理限流、降级、trace、监控、负载均衡等功能。

       在kubernetes出现之前,这些问题通常由微服务框架解决,如Dubbo、SpringCloud等。但kubernetes出现后,这些功能应交给专门的云原生组件,即本篇将讲解的Istio,它是目前最广泛使用的服务网格解决方案。

       官方对Istio的解释简洁,具体功能包括限流、降级、trace、监控、负载均衡等。Istio分为控制面control plane和数据面data plane,控制面负责Istio自身管理功能,数据面由Envoy代理业务应用,实现流量管理。

       首先安装Istio命令行工具,确保有kubernetes运行环境,Linux使用特定命令,Mac使用brew,其他环境下载Istio配置环境变量。

       使用install命令安装控制面,默认使用kubectl配置的kubernetes集群,使用demo profile。

       为namespace添加label,使得Istio控制面知道哪个namespace下的Pod自动注入sidecar,为default命名空间开启自动注入,部署deployment-istio.yaml。

       每个Pod有两个container,其中一个istio-proxy sidecar,进行负载均衡测试,效果相同,说明Istio生效。

       观察sidecar日志,看到所发出和接收到的流量。

       本期内容简单,主要涉及安装配置,下期将更新内部服务调用的超时、限流等功能配置。

       大部分操作偏运维,后续功能配置只需编写yaml资源。

       生产使用时,提供管理台可视化页面,方便开发者灵活配置功能。

       各大云平台厂商提供类似能力,如阿里云的EDAS等。

       本文源码可访问github.com/crossoverJie...

kubernetes网络和CNI简介

        对于任何kubernetes网络方案,都需要满足以下需求:

        容器通过使用linux内核提供的Cgroups和Namespaces技术实现了相互之间的网络、存储等资源的隔离与限制。对于网络,kubernetes项目中的Pod则通过让一组用户容器和pause容器/infra容器共享一个network namespace的方式,使一个Pod内的容器都使用了一个网络栈。而一个 Network Namespace 的网络栈包括:网卡(Network Interface)、回环设备(Loopback Device)、路由表(Routing Table)和 iptables 规则。所以,不难想象,Pod的网络和一台虚拟机的网络栈配置起来实际上是类似的,比如同样需要虚拟网卡,IP、MAC地址等,并且每个Pod都有自己唯一的网络栈。当所有的Pod都有了自己的网络栈后,如果想要连接两个Pod进行通信,则类似于其他任何网络架构,需要配置交换机、路由器等,并为其规划IP,路由等信息。如果是对于物理机,我们可以使用网线、交换机、路由器这些设备进行连接,但在Pod中显然需要其他方式。

        kubernetes Pod的网络方案有很多,最典型的就是Flannel的三种后端实现方式了(UDP、VxLan、host-gw),讨论这些则主要是在关注容器跨主机通信的问题。而这里主要讨论的则是Pod的内部的网卡如何创建,又如何将网络数据包在宿主机和容器之间传递。

        图片来自 这里

        CNI是Container Network Interface的缩写,它是一个通用的容器网络插件的k8s网络接口,开源社区里已经有了很多实现容器网络的方案,不同的网络实现方案在k8s内都是以插件调用的形式工作,所以这里需要一个统一的标准接口。如果将k8s的Pod视为一台“虚拟机”,那么网络插件的工作就是管理这台虚拟机的网络栈,包括给这台虚拟机插入网卡、配置路由、IP等;而CNI的工作则是对接网络插件和kubelet容器运行时管理工具(对于docker容器运行时来说实际上是dockershim),主要体现在Pod的创建和删除过程:

        CNI 配置文件,给CRI使用的,比如dockershim

        CNI官方维护的插件包括以下几个,对于已经搭建好的k8s,cni插件可以在 /opt/cni/bin/ 文件夹下查看:

        CNI的基础可执行文件按照功能可以划分为三类:

Main插件:创建具体网络设备

        bridge :网桥设备,连接container和host

        ipvlan :为容器增加ipvlan网卡

        loopback :lo设备

        macvlan :为容器创建一个MAC地址

        ptp :创建一对Veth Pair

        vlan :分配一个vlan设备

        host-device :将已存在的设备移入容器内

        IPAM插件:负责分配IP地址

        dhcp :容器向DHCP服务器发起请求,给Pod发放或回收IP地址

        host-local :使用预先配置的IP地址段来进行分配

        static :为容器分配一个静态IPv4/IPv6地址,主要用于debug

        meta插件:并非单独使用

        bandwidth :使用Token Bucket Filter(TBF)来限流的插件

        flannel :flannel网络方案的CNI插件,对应于flannel配置文件

        portmap :通过iptables配置端口映射

        sbr :为网卡设置source based routing

        tuning :通过sysctl调整网络设备参数

        firewall :通过iptables给容器网络的进出流量进行一系列限制

        实验内容:go安装社区维护的CNI相关插件,在linux主机上创建一个network namespace,再利用安装的网络插件给这个linux network namespace配置好网络。实验方法教程参考的是 这里

        安装cni插件:

        linux上创建一个network namespace:

        设置网络参数:

        vi /etc/cni/net.d/-myptp.conf

        模拟给容器配置网络:

        返回值

        测试网络是否可用:

        进入namespace,ping一下百度的DNS

        清除:

        最后多说一句,所谓的云服务其实就是基于网络的服务,好好规划网络可以充分利用数据中心的资源,只有充分利用数据中心的资源,才能称之为云计算。

在 EKS 集群中使用 Traefik 管理4/7层流量

       王跃祖和张杰合作的文章指出,在国内知名人工智能企业的业务容器化部署中,亚马逊云科技 Amazon Elastic Kubernetes Service (EKS) 采用了AWS Load Balancer Controller来管理4/7层服务流量。然而,考虑到客户业务的复杂性和对认证系统的需求,他们发现Traefik是一个更合适的选择。

       Traefik作为一款开源的负载均衡和反向代理工具,具有高效资源管理、动态配置、丰富中间件支持以及自动发现容器变化等特点。它能够简化配置,自动调整路由规则,支持多种负载均衡算法,并且能通过中间件实现认证、限流等功能。在EKS环境中,通过Helm部署Traefik 2.7.0版本,配合EKS v1..9-eks,可以有效替代原有的ALB和NLB,节省资源并提高管理效率。

       具体应用上,Traefik可以创建nginx应用和IngressRoute资源,提供HTTPS支持,实现路径重写、流量复制和身份验证。例如,通过HTTP跳转至HTTPS中间件,确保访问安全;使用IPWhiteList中间件,实现访问控制。Traefik的流量镜像功能,如将%流量镜像到测试版本,有助于业务测试和故障排查。

       最终,通过将+个负载均衡器简化为Traefik服务,不仅降低了成本,还增强了系统的安全性和灵活性。可视化的Traefik Dashboard提供了更好的监控和管理体验。综上,Traefik的引入带来了显著的收益和提升。

KubeVela 1.7 版本解读:接管你的已有工作负载

       接管工作负载

       KubeVela 1.7 版本发布,引入了工作负载接管功能,让已有工作负载能自然迁移到标准化体系中,被统一管理。接管提供两种模式:“只读”与“接管”。前者适用于内部已有平台,能以只读方式统一观测应用。后者适用于直接迁移场景,自动接管工作负载,实现统一管理。

       使用策略(policy)体系定义接管规则,选择器区分资源类型,确保应用创建时可纳入管理,复用配置。在“只读”策略中,资源如“Deployment”是只读的,运维特征创建和修改“Ingress”、“Service”不受影响。在“接管”策略中,资源可控,应用创建时能将已有资源纳入管理,仅将对“scaler”运维特征的实例数修改作为配置。

       通过命令行一键接管工作负载,方便快捷。使用`vela adopt`命令,指定资源类型、命名空间与名称,自动生成接管的`Application`对象。命令默认使用“只读”模式,支持原生资源、Helm应用及批量接管命名空间下全部工作负载。

       接管规则灵活定义,基于可扩展设计原则,使用CUE定义配置转换规则。命令行一键接管是规则的一种特例,适用于高阶用户,更多细节可参考官方文档。

       大幅性能优化

       性能优化是1.7版本亮点之一,整体性能、单应用容量、应用处理吞吐量提升5到倍,涉及资源配额调整、压缩功能、应用与组件版本记录上限降低、参数调整等。

       通过ztsd压缩功能,默认开启,资源大小压缩近倍,单个KubeVela Application资源容量扩大倍。应用版本记录上限从个减少到2个,组件版本默认关闭,控制器内存消耗缩小1/3。定义历史版本记录从个减少到2个,Kubernetes API交互限流QPS从提升到。

       易用性提升

       客户端支持多环境资源渲染,实现策略(policy)和工作流(workflow)根据不同环境自定义生成不同实际资源。应用删除功能增强,交互式删除资源,保留下层资源或保留应用元数据。插件安装后自定义输出,允许制作者动态输出安装提示。工作流能力增强,支持更多细粒度操作,包括在工作流中构建镜像并推送到镜像仓库。

       VelaUX控制台增强功能,包括用户界面和操作优化。KubeVela 1.8版本预计在3月底发布,规划包括进一步增强功能。社区欢迎参与讨论,成为贡献者或合作伙伴,详情可访问GitHub社区页面。

kube-apiserver限流机制原理

       本文分享自华为云社区《kube-apiserver限流机制原理》,作者:可以交个朋友。

       背景:apiserver在Kubernetes中扮演核心角色,一旦遭遇恶意刷接口或请求量超负荷,apiserver服务可能崩溃,影响整个Kubernetes集群的可用性。因此,实现apiserver限流是提升Kubernetes健壮性的关键。

       k8s-apiserver限流能力演进:限流能力经历了两个阶段。在kubernetes 1.版本之前,限流主要分为变更和非变更请求类型,并通过配置参数设定最大并发数,但这限制了处理能力。随后,引入了APF(APIPriorityAndFairness)作为默认限流方式,以更细粒度分类和隔离请求,结合优先级和公平性策略处理。

       两个阶段对比显示了APF在分类颗粒度和隔离性方面的显著提升。老版本限流方法在处理大规模请求时,易导致性能瓶颈,影响其他客户端请求。而APF通过更精细的资源管理和策略配置,实现更高效、灵活的限流控制。

       APF关键资源介绍:APF包含FlowSchema和PriorityLevelConfiguration两个核心资源。FlowSchema解决分类颗粒度粗的问题,通过规则匹配请求,覆盖资源类型、操作类型、请求者身份和命名空间等维度。PriorityLevelConfiguration则解决隔离性差和优先级问题,定义限流细节,如队列数量、队列长度和是否可排队。关联规则匹配的请求,实现精细化管理。

       处理过程:请求与集群中的FlowSchema列表匹配,优先级较低的规则先进行匹配。匹配规则后,请求关联到指定的PriorityLevelConfiguration资源。资源中包含多个队列,根据请求分组分配队列数量,实现请求隔离。每个PriorityLevelConfiguration资源具备独立并发上限,确保公平性处理请求,避免恶意用户影响系统整体性能。

       实战示例:通过查看Kubernetes原生规则,创建自定义规则以限流特定资源。通过在不同命名空间中创建测试实例,模拟请求,分析apiserver日志信息,验证限流效果。实现对特定请求的限制,确保系统稳定运行。

       总结:通过深入了解kube-apiserver限流机制原理,掌握APF的分类、优先级管理和队列分配策略,可以有效提升Kubernetes集群的稳定性,防范大规模请求带来的风险,确保服务持续可用。

更多资讯请点击:焦点

热门资讯

TV APP 源码

2024-11-28 21:152673人浏览

传奇源码论坛_传奇源码论坛官网

2024-11-28 21:151661人浏览

c界面源码_c+源码

2024-11-28 20:48670人浏览

内核源码分析_内核源码是什么

2024-11-28 20:442824人浏览

pcb源码文件

2024-11-28 20:121064人浏览

bat源码

2024-11-28 20:09262人浏览

推荐资讯

改机源码_改源码教程

1.源码是什么2.源码是什么意思啊3.电脑的机器码可以修改吗?如何修改?4.安卓改机、抹机、新机、一键源码是什么 源码是指软件或程序的原始代码。它是编写程序时输入的未经编译的文本文件,通常由开发者

將墮胎藥歸為管制物質 美國路易斯安那州被起訴

當地時間10月31日,美國路易斯安那州因將墮胎藥米非司酮和米索前列醇歸類為管制物質而被起訴。這起訴訟在路易斯安那州巴吞魯日的州法院發起,原告包括醫療人員和患者,訴訟稱,該州的分類導致產房的急診醫生無法

视频软件源码_视频软件源码下载

1.短视频成品APP源码有什么独特优点?2.零基础读懂视频播放器控制原理: ffplay 播放器源代码分析3.视频源代码怎么找4.什么是短视频app源码?5.怎么查看视频代码的源码6.为什么要做短视频