【模拟驾校系统源码】【c 读取dwg文件源码】【macd背驰指标源码】简单opencv源码_opencv源代码
1.��opencvԴ��
2.如何从源码编译OpenCV4Android库
3.10分钟!简单用Python实现简单的源码源代人脸识别技术(附源码)
4.win10 cmake源码编译安装opencv(c++,qt)(解决ffmpeg下载失败导致opencv无法处理视频)
5.OpenCV安装教程(编译源码,一次成功)提供安装好OpenCV的简单系统镜像
6.MacBook(m1)源码编译opencv
��opencvԴ��
OpenCV是用于计算机视觉的库,适用于Python、源码源代Ruby和MATLAB。简单在VSLAM技术研究中,源码源代模拟驾校系统源码经常需要在Ubuntu系统上安装不同版本的简单OpenCV。以下为OpenCV3.3.1版本在Ubuntu系统下的源码源代安装教程,适合初学者。简单
一、源码源代下载OpenCV源码
欲安装OpenCV3.3.1版本,简单可关注公众号「3D视觉工坊」,源码源代在后台回复「OpenCV3.3.1_linux」获取安装包下载链接。简单
二、源码源代检查已安装的简单OpenCV版本
在终端输入命令`pkg-config --modversion opencv`查看当前安装的OpenCV版本。
三、安装OpenCV
下载并解压OpenCV3.3.1的源码安装包后,执行如下命令进行安装,安装路径为`/home/yongqi/workspace/2_ProgramFiles/OpenCV3.3.1`。
四、配置OpenCV环境
配置OpenCV的lib路径,以完成环境设置。
五、测试OpenCV版本
完成配置后,系统显示的OpenCV版本应为3.3.1。
六、学习OpenCV
提供一份包含G资料的《人工智能自学视频》资料包,内容包括人工智能基础入门、AI框架实战、图像识别、OpenCV、机器学习等,以及国内外知名资源、AI论文等。
资料在网盘中整理整齐,欢迎下载!分享给有需要的伙伴。如果需要使用OpenCV2.4.9版本,c 读取dwg文件源码只需调整第四步的pkgconfig路径即可。
如何从源码编译OpenCV4Android库
本文介绍如何从源码编译OpenCV4Android库,解决实际应用中遇到的问题。
通常,Android平台已有官方提供的OpenCV库,但实际应用中可能会遇到无法同时使用SNPE(高性能神经网络加速库)和OpenCV的问题,因为SNPE使用的STL链接的是libc++,而OpenCV默认使用的是gnu_stl,这会导致gradle配置无法正常编译。
为解决此问题,需要自行编译OpenCV4Android库,可选择在Linux下基于NDK编译,或在Windows中使用MinGW编译。本文选择前者,便于生成Docker镜像,方便部署。
对于已经配置好的编译镜像,可通过Docker命令启动,并设置环境变量。若需修改NDK或SDK版本,同样更新环境变量。然后进入目录开始编译,修改编译选项。
若从头开始搭建编译环境,首先生成基于Ubuntu.的Docker基础容器,安装基础工具,如vim、ant或gradle。安装与配置Cmake,确保版本为3.6或以上,以支持HTTPS,避免编译过程中的文件下载失败。安装JDK和Android SDK,并配置环境变量。
下载OpenCV源码和contrib库,选择合适的分支以避免编译错误。编译过程可使用指定配置文件ndk-.config.py,macd背驰指标源码选择需要编译的指令集、STL库等。
完成编译后,即可得到OpenCV-Android-SDK库,适用于Android Studio中的Java或C++接口使用,提供方便的计算机视觉功能。
分钟!用Python实现简单的人脸识别技术(附源码)
Python实现简单的人脸识别技术,主要依赖于Python语言的胶水特性,通过调用特定的库包即可实现。这里介绍的是一种较为准确的实现方法。实现步骤包括准备分类器、引入相关包、创建模型、以及最后的人脸识别过程。首先,需确保正确区分人脸的分类器可用,可以使用预训练的模型以提高准确度。所用的包主要包括:CV2(OpenCV)用于图像识别与摄像头调用,os用于文件操作,numpy进行数学运算,PIL用于图像处理。
为了实现人脸识别,需要执行代码以加载并使用分类器。执行“face_detector = cv2.CascadeClassifier(r'C:\Users\admin\Desktop\python\data\haarcascade_frontalface_default.xml')”时,确保目录名中无中文字符,以免引发错误。这样,程序就可以识别出目标对象。
然后,选择合适的算法建立模型。本次使用的是OpenCV内置的FaceRecognizer类,包含三种人脸识别算法:eigenface、fisherface和LBPHFaceRecognizer。LBPH是一种纹理特征提取方式,可以反映出图像局部的纹理信息。
创建一个Python文件(如trainner.py),mt6620驱动源码用于编写数据集生成脚本,并在同目录下创建一个文件夹(如trainner)存放训练后的识别器。这一步让计算机识别出独特的人脸。
接下来是识别阶段。通过检测、校验和输出实现识别过程,将此整合到一个统一的文件中。现在,程序可以识别并确认目标对象。
通过其他组合,如集成检测与开机检测等功能,可以进一步扩展应用范围。实现这一过程后,你将掌握Python简单人脸识别技术。
若遇到问题,首先确保使用Python 2.7版本,并通过pip安装numpy和对应版本的opencv。针对特定错误(如“module 'object' has no attribute 'face'”),使用pip install opencv-contrib-python解决。如有疑问或遇到其他问题,请随时联系博主获取帮助。
win cmake源码编译安装opencv(c++,qt)(解决ffmpeg下载失败导致opencv无法处理视频)
要使用Qt与Windows上的OpenCV,当默认的msvc版本不满足需求时,需要通过源码编译安装,并配合cmake工具。以下是详细的步骤:
首先,下载OpenCV sources版本,同时确保已经安装了cmake编译工具,这里推荐选择对应版本的MinGW版本。在Qt的mingw环境中,需将mingw的bin路径(例如:D:\Programs\Qt\Qt5..\Tools\mingw_\bin)添加到环境变量,验证配置成功可通过在cmd中输入gcc -v。
解压OpenCV到指定位置,创建一个build文件夹。使用cmake-gui,设置源码路径和build文件夹,配置为MinGW Makefiles。东方红公式源码初次配置可能遇到问题,如ffmpeg下载失败,这时需要重命名ffmpeg.cmake为ffmpeg.txt,修改其中的下载地址为/。
在cmake-gui中,勾选with_qt和with_opengl,取消opencv_enable_allocator_stats和与python相关的选项。如果需要python支持,可以使用pip安装。配置完成后,再次点击configure并生成makefile,确保所有路径正确。
在build文件夹中,通过mingw-make -j(根据你的CPU核心数设置线程数,例如)开始编译,最后执行mingw-make install。安装后,别忘了将安装路径(如D:\Programs\opencv3.4.\build\install\x\mingw\bin)添加到系统环境变量。
通过这些步骤,你就可以在Qt环境中成功安装并使用OpenCV处理视频了,无需担心ffmpeg下载失败的问题。
OpenCV安装教程(编译源码,一次成功)提供安装好OpenCV的系统镜像
本文提供了一套简洁明了的OpenCV安装教程,旨在帮助开发者实现一次成功安装。首先,选择官方Raspbian-buster-full系统作为操作平台,并建议更换源至清华源,以确保下载过程顺利,避免遇到如GTK2.0下载失败等问题。对于远程操作需求,外接屏幕或使用VNC远程连接是可行方案,同时通过tee命令记录编译过程,以便在远程连接中断时仍能查看详细信息。
安装系统镜像,完成OpenCV安装后,生成的镜像文件大小仅4.G,压缩后为2.G,直接烧录至TF卡即可使用。该系统已预装VNC等必备软件,配置了静态IP,提供详尽的使用指南,包括树莓派和Windows系统间的文件复制和传输方法。系统兼容树莓派4和3型号,对于有补充需求之处,将在文章末尾进行说明。
正式安装OpenCV,首先确保安装所需的依赖工具和图像、视频库。按照步骤逐一进行,包括安装构建必需工具、图像工具包、视频工具包、GTK2.0以及优化函数包。在编译OpenCV源码前,下载并解压OpenCV3.4.3及opencv_contrib3.4.3(选择版本时需确保二者版本号一致)。
采用直接下载或wget下载两种方法获取源码,解压后进入源码目录。创建release文件夹,用于存放cmake编译时产生的临时文件。设置cmake编译参数,安装目录默认为/usr/local,确保参数正确配置,尤其是对于root用户下的cmake命令,需修改OPENCV_EXTRA_MODULES_PATH的值为绝对路径。
编译过程中,确认进度到达%,以验证安装成功。进行其他配置,包括设置库路径,以便于使用OpenCV库,也可选择不进行设置。配置opencv.conf和bash.bashrc文件,进行必要的参数添加,重启树莓派或重新登录用户后,测试OpenCV使用是否正常。
演示Python程序使用OpenCV画一条直线,确保Python编译器已安装,执行相关代码。系统镜像中额外提供远程连接和文件传输功能的说明,包括使用VNC或Putty等工具远程控制树莓派的方法,以及如何在树莓派与Windows系统间进行复制粘贴,通过autocutsel软件简化操作流程。
MacBook(m1)源码编译opencv
首先,从GitHub上获取OpenCV的源代码是实现MacBook (m1)本地编译的关键步骤。你可以通过运行以下命令来拉取最新版本:
bash
git clone /opencvopencv.git
如果你想锁定特定的版本,比如2.1分支,可以使用如下命令替换`[tag_name]`为实际的版本号:
bash
git clone --branch [tag_name] /opencvopencv.git
接下来,为了进行编译,你需要准备一个专门的构建目录,这可以通过以下命令创建:
bash
mkdir opencv_build
cd opencv_build
然后,运行CMake来配置编译环境:
bash
cmake ..
配置完成后,开始编译安装过程:
bash
make
sudo make install
整个过程涉及到了从GitHub获取源代码、创建编译目录、配置CMake并执行编译和安装。最后,务必确认你的目录结构包括了源代码、构建目录以及安装后的文件。
OpenCV:Mat源码解读
OpenCV中的核心组件Mat是理解库运作的关键。通过深入阅读其源码,我们可以了解到Mat如何管理内存、与Sub-mat的关系,以及如何支持不同数据类型。本文旨在提供对Mat类的深入理解,帮助你掌握Mat的内存管理机制、数据结构设计,以及Mat中数据类型的表示方式。通过本文,你将对Mat的基本构成有清晰的认识,并理解内存分配的策略。
Mat类的实现类似于一个容器,主要构造和析构不同类型的Mat。Mat的内部数据存储在UMatData结构中,通过m.data指针访问。内存分配由UMatData和MatAllocator共同完成。Mat的shape由size(大小)和step(步长)组成,便于计算每个维度所需的内存空间。
UMatData结构隐藏了内存配置的细节,而MatAllocator根据不同设备实现底层不同的内存管理。以CPU的底层实现为例,这里仅展示其基本架构。理解了这些,Mat的基本构造就有了基础概念。
Mat的类型设计是其独特之处,用CV_{ bit}{ U/F/S}C{ n}表示,如CV_FC3表示3通道位浮点。其中depth部分决定基础类型,如CV_F。Mat的大小设计是根据不同类型进行优化的。在OpenCV 5.x版本中,depth用低5位表示,其余位用于通道数。
通过实际数据类型的例子,如通道的8U类型m0和其子Matm2,可以观察到CONT_FLAG和SUBMAT_FLAG的变化,以及对于非常用数据格式如CV_8UC()的性能影响。OpenCV对1、3、4通道数据有优化,而3通道的数据在某些情况下速度可能接近4通道。
最后,Mat的高效使用不仅依赖于基础计算,MatExpr起到了桥梁作用,它向上简化接口,向下连接加速指令。理解了Mat的这些特性,你将能够更有效地利用OpenCV的Mat进行数据处理。
CV实战Ubuntu.源码编译安装opencv-3.4.X+测试demo
在Linux环境下,特别是Ubuntu .中安装OpenCV-3.4.x版本,需要理解其源码编译过程,本文将详细说明从源码编译到安装,以及测试demo的全过程。安装步骤分为源码下载、使用`apt-get`安装依赖项、从源码构建安装OpenCV、配置环境、验证安装情况以及卸载。在Linux环境下,确保系统稳定运行是关键步骤之一。以下为详细流程: 1. 源码下载 从OpenCV官网或GitHub下载OpenCV源码。选择版本时,考虑与项目的兼容性以及对最新特性的需求。 2. apt-get安装 Ubuntu下,OpenCV安装可通过两种方式:直接使用`$ sudo apt-get install python-opencv`进行快速安装,适用于仅在Python环境中使用OpenCV的情况;推荐从源码构建安装,以获取更新的代码版本,增强稳定性和可控性。 3. 从源码安装 从源码构建安装时,可选择默认安装位置或自定义安装位置。默认位置通常为`/usr/local`,而自定义位置需要额外配置。 3.1 构建依赖项 确保安装`cmake`, `gcc`, `g++`等构建工具。对于Python支持,选择安装Python 2和/或Python 3的特定模块。安装`GTK`支持用于图形界面应用,以及处理库(根据需要)。使用`cmake`下载`ippcv`库,注意**问题。 3.2 默认位置安装 使用`git`或下载的压缩包解压后,切换到源码目录,执行`cmake`命令以构建`CMakeLists.txt`,并创建`makefile`。指定构建参数时,`CMAKE_INSTALL_PREFIX`用于设置安装路径,通常为`/usr/local`。根据需要选择构建类型(`DEBUG`或`RELEASE`)和是否启用CUDA加速。 3.3 自定义位置安装 自定义安装时,使用`cmake`命令时需添加`-DCMAKE_INSTALL_PREFIX`参数,指向自定义安装目录。在安装后,还需配置扫描路径和设置环境变量,确保其他项目能够正确引用OpenCV库。 配置 配置步骤包括将OpenCV的`lib`路径添加到系统配置中,以便其他项目能够引用OpenCV库。通常,这涉及编辑`ld.so.conf`文件或通过环境变量设置。 验证查看版本 在终端或Python环境中,通过`pkg-config`命令或Python导入`cv2`模块查看OpenCV版本。 C++和Python demo测试 执行官方提供的示例代码,验证OpenCV功能。在C++环境中,通过指定`OpenCV_DIR`变量路径来正确引用库文件。在Python环境中,确保导入路径设置正确。 卸载 卸载OpenCV时,使用`make uninstall`命令。注意,仅删除了文件,留下的空文件夹可能需要手动删除。 通过遵循上述步骤,即可在Ubuntu .系统中成功安装OpenCV,并进行测试验证。确保安装过程的每个环节都得到正确配置,以避免潜在的问题和冲突。