计算单摆运动一周的过程 MATLAB
%单摆角度很小时,sin(θ)≈θy=dsolve('D2y = -0.*y','y(0)=pi/4,Dy(0)=0');
syms t;
figure;
ezplot(t,y,[0 ]);
%θ较大时,只能求数值解
tspan=[0 ];
y0=[pi/4 0];
[t,x]=ode(@odefun,tspan,y0);
figure;
plot(t,x(:,1));
function y = odefun(t,x);
y = [-0.*sin(x(2)); x(1)];
dx/dt=y,dy/dt=-sinx,求大神帮忙编一个MATLAB的程序,用龙格库塔法解这个方程组,单摆单摆求关于x,源码绿色 网站 源码y的数值解
建立m文件:function dx=dfun(t,x) %函数名为dfun,参数为t与x
dx=[x(2);-sin(x(1))]; %以向量形式表示方程
输入:
clear
ts=-:0.:; %步长取0.
x0=[1,教程源码推荐系统0]; %设定参数初值
options=odeset('reltol',1e-6,'abstol',1e-9); %提高精度
[t,x]=ode(@dfun,ts,x0,options); %调用ode计算
plot(x(:,1),x(:,2)),grid %作出y(x)图形
axis equal
gtext('\fontsize{ }x'),gtext('\fontsize{ }y') %标记字体x
但以上并非曲线y=f(x)的完整形状(调整ts的范围也无济于事),原因是单摆单摆y为x的周期函数,而数值解只能求出初值附近的源码解
本题可以求出y=f(x)的解析表达式
由dx/dt=y,dy/dt=-sinx,教程得
dy/dx=(dy/dt)*1/(dx/dt)=-sinx/y
分离变量,单摆单摆积分得
y^2=2*cos(x)+C,源码其中C为常数
代入初始条件y(1)=0,教程可求得C=-2*cos(1)
∴y^2=2*cos(x)-2*cos(1),单摆单摆天天狙击源码此式为原方程组的源码解析解
利用ezplot命令可绘制出完整图像
clear
syms x y
ezplot(y^2-2*cos(x)+2*cos(1),[-8,8,-3,3])
axis equal
axis([-8,8,-3,3])
grid on
另外,改变初值将得到不同的教程图形(为什么?请思考),例如
初值改为:x=1,y=√[2*(cos(1)+1)]-^(-5)
初值改为:x=1,y=√[2*(cos(1)+1)]+^(-5)
致命摇摆-双摆
近期,网络上出现了一个引人入胜的底层源码原理科学小知识——双摆。这种构造简单却运动轨迹复杂的系统,由一个单摆连接在另一个单摆的尾部构成。出于好奇,我决定模拟一下双摆的androidapp框架源码运动轨迹,观察其具体的表现。
在简化的模型中,所有刚体均由钢材制成,并考虑了重力和摩擦等因素。通过给上方的单摆一个初始的转动速度,进行模拟仿真,并后处理绘制出下部单摆一个点的运动轨迹。结果令人惊讶,运动轨迹如一团乱麻,错综复杂。尽管如此,我们还是可以用数学的方法在matlab中模拟出双摆的模型。不得不说,数学的神奇之处令人叹为观止。
2024-11-30 11:02
2024-11-30 10:34
2024-11-30 10:22
2024-11-30 10:04
2024-11-30 09:50