1.Android 基于 Choreographer 的码教渲染机制详解
2.从分析 SkyAPM-dotnet 源码学习现代 APM 探针设计理念(一)
3.MySQL在APM中的运用及优势apmmysql
4.如何对后台应用进行优化:使用应用性能管理工具
5.arduino如何输出一个数组?如位置坐标(x,y).不是赋值而是输出。
6.还在用Zipkin分布式服务链路追踪?码教来试试这个吧!
Android 基于 Choreographer 的渲染机制详解
Photo by Peter Thomas on Unsplash
本文深入探讨了 Android 开发者可能不常接触,但在框架渲染流程中至关重要的码教 Choreographer 类。我们将从引入背景、码教简介、码教源码解析、码教soring boot 源码分析与核心组件的码教关系以及手机厂商优化思路等方面进行详述,旨在帮助开发者深入了解程序每一帧运行的码教原理,以及提升对关键组件如 Message、码教Handler、码教Looper、码教MessageQueue、码教Measure、码教Layout、码教Draw 的码教理解。
了解 Choreographer 有助于开发者掌握渲染机制的核心,从而优化应用性能。Choreographer 在渲染链路中作为连接器,确保 App 以稳定的帧率运行,减少帧率波动带来的不适感。通过结合 Systrace 和 MethodTrace 工具,开发者能更直观地理解这一机制。
在演进过程中,引入了 Vsync、TripleBuffer 和 Choreographer 机制,以提供稳定的帧率输出,使得软件层和硬件层同步工作。Choreographer 的引入,配合 Vsync 信号周期调整,控制了每一帧的绘制操作时机,确保 App 在 Hz 刷新率下稳定运行。
Choreographer 承担着渲染流程中的重要角色,通过与 SurfaceFlinger、Vsync 和 TripleBuffer 的udi溯源码协同工作,确保了以 fps 的帧率稳定输出画面。这一机制不仅提高了用户体验,还为开发者提供了优化应用性能的途径。
Choreographer 的初始化、单例初始化、构造函数等核心部分,以及 FrameHandler、Choreographer 初始化链等细节,均涉及到关键的代码逻辑和流程。通过源码解析,我们能深入理解 Choreographer 如何在 Android 主线程中组织和管理每一帧的绘制过程。
Choreographer 处理一帧的逻辑主要围绕 doFrame 函数展开,包括计算掉帧、记录帧绘制信息、执行回调等关键步骤。通过 Systrace 观察这一流程,可以清晰地了解 Choreographer 如何组织和优化每一帧的渲染。
Choreographer 与 APM(应用性能监控)工具相结合,提供了丰富的性能监控接口,如 FrameCallback 和 FrameInfo,帮助开发者监控和优化应用性能。此外,Choreographer 还与 MessageQueue 和 Looper 等核心组件紧密关联,通过自定义 MessageLogging 等特性,增强了性能监控和优化能力。
针对移动事件优化、后台动画优化、帧绘制优化、应用启动优化以及高帧率优化,手机厂商通过修改源码,实现了对 Choreographer 的定制化增强,提高了系统性能和用户体验。这些优化策略展示了 Choreographer 在现代移动设备中的openai源码前端重要作用。
总之,Choreographer 是 Android 渲染链路中的关键组件,它通过稳定的帧率输出、优化的渲染流程以及与核心组件的高效协同,为开发者提供了强大的工具,以提升应用性能和用户体验。深入理解 Choreographer,将有助于开发者在实际应用中实现性能优化,实现更流畅、高效的移动应用。
从分析 SkyAPM-dotnet 源码学习现代 APM 探针设计理念(一)
在后端软件行业的快速变迁中,从SOA到微服务、从业务一体化到中台战略、从虚拟化到云原生,技术更新速度日新月异。这种变革背后的核心动力在于硬件发展的瓶颈,促使行业转向追求软件的规模化效益。现代后端软件工程师面临的挑战之一是如何对服务性能有全面的理解,而APM(Application Performance Monitoring)工具成为了解决这一问题的关键。
APM的基本构成包括指标性统计、分布式追踪和日志记录。指标性统计,如服务的吞吐量、成功率、流量等,是对单个指标或数据库的分析。分布式追踪则关注一次请求的全过程,从客户端发起到服务完成,甚至涉及业务流程,如商品订购流程,追踪请求的流转轨迹。日志记录则是程序运行过程中产生的信息收集,提供实时的伏羲ai源码事件记录。
随着技术的发展,性能监控工具的使用变得越来越普遍。早期,开发人员可能需要自己构建监控系统,但这既耗时又费力。SkyWalking等APM系统应运而生,旨在简化性能监控的实现,减少重复工作。
在SkyWalking中,dotnet探针的设计遵循核心规范。dotnet探针主要基于DiagnosticSource实现,这提供了一种消息的生产者消费者模型,使得事件可以在任意地方被接收。微软官方库中,如HttpContext、HttpClient、SqlClient等,都预留了性能打点,以捕获关键事件。第三方库如gRPC、CAP、SmartSql也提供了同样的功能。
开发人员可以通过适配SkyWalking,为自己的库添加性能打点,即向DiagnosticSource发送事件信息。这涉及到创建自定义采集器,监听特定事件,并将数据发送到数据中心。
探针的核心代码在于监听消息,其关键在于DiagnosticListener,它实现了消息的监听与数据的上报。监听的事件由特定的Processor负责处理,这些Processor实现了ITracingDiagnosticProcessor接口,软件源码买断具体负责数据的收集与转换。
两个有代表性的Processor示例展示了如何实现这一过程。一个针对AspNetCore请求管线,监听并收集请求相关的事件;另一个是针对System.Net下的通用httpclient,同样监听特定事件,以构建完整的请求上下文,并生成标准的tracing信息。
通过安装SkyWalking并加入探针,后端服务的性能数据将被收集并上传至OAP平台进行分析,最终提供直观的APM信息。这一过程不仅简化了性能监控的实施,还极大地提高了数据分析的效率与准确性。建议读者亲自尝试安装SkyWalking,体验探针在实际服务中的应用。
MySQL在APM中的运用及优势apmmysql
MySQL在APM中的运用及优势
随着云计算、大数据、物联网等技术的不断发展,应用性能管理(APM)已经成为了关键的监控手段之一。在APM中,MySQL作为一种开源数据库管理系统已经被广泛应用。
MySQL在APM中的运用
MySQL可以通过各种APM工具进行监控和管理。例如,通过Nagios可以监控MySQL的性能和状态,还可以通过Zabbix、Ganglia、Cacti等工具进行监控和统计。此外,有一些公司提供商业化的MySQL监控服务,例如Percona Monitoring and Management(PMM)。
通过这些工具,管理员可以获得MySQL数据库的系统状态信息,例如CPU占用率、内存使用率、磁盘读写速度等。此外,还可以监测MySQL的运行时间、请求处理速度、传输速度等。通过APM中的MySQL监控,管理员可以随时了解MySQL数据库的状态,及时进行修复和优化。
MySQL在APM中的优势
MySQL在APM中的优势包括:
1. 开源: MySQL是一种开源的数据库管理系统,它的源代码可以被广泛的共享和使用。这意味着MySQL数据库管理员可以快速定位和修复各种性能问题,而不需要等待厂商官方的支持。
2. 易用性: MySQL提供了许多易用的工具和API,这可以使得管理员更加方便地进行数据管理和性能优化。例如,MySQL提供了MySQL Workbench工具,可以帮助管理员轻松地操作和管理MySQL数据库。
3. 扩展性: MySQL支持多种存储引擎,例如InnoDB、MyISAM等。管理员可以根据应用的要求选择最适合的存储引擎,以提高数据库的性能和可靠性。
4. 兼容性: MySQL支持多种操作系统,例如Linux、Windows等。这样,管理员可以在多种操作系统上部署和管理MySQL数据库。
5. 性能: MySQL在APM中能提供高性能的处理能力。例如,MySQL可以通过调整参数和使用缓存技术来提高响应速度和处理能力,以应对高并发的访问请求。
总结
通过上述内容,我们可以看到,MySQL在APM中的运用和优势是不可忽视的。MySQL提供了丰富的功能和易用的工具,可以帮助管理员监控和管理MySQL数据库。因此,MySQL可以成为提高企业应用性能的重要工具,提高应用的效率、可靠性和用户满意度。
如何对后台应用进行优化:使用应用性能管理工具
优化后台应用的关键在于有效识别和解决性能瓶颈。在缺乏应用性能管理工具(APM)时,通过调试和源码阅读找出问题变得复杂,尤其在团队协作和大型项目中。APM工具如New Relic,能实时监控和分析应用性能,通过收集运行数据在后台揭示应用运行状况,重点分析五个维度。
Apdex指标衡量用户对应用性能的满意度,将应用响应时间与理想时间T进行比较,分为满意、体验不佳和无法接受三种表现。New Relic作为常用工具,其基础版免费且功能丰富,适合小型Web应用,而专业版则针对中大型应用提供更多高级功能。以Django应用的博客为例,我们可以通过New Relic进行安装和配置,设置后几分钟,后台即可展示应用的性能数据。
在New Relic后台,我们可以观察到服务器响应时间、Python运行时间和数据库消耗等信息,以及Apdex值和吞吐量。对于性能优化,大型应用可能需要重点关注数据库,而对于我的博客,优化焦点可能是减少应用逻辑执行时间。New Relic还提供了函数级的详细分析,帮助我们找出耗时的部分,并考虑使用缓存等技术提升性能。同时,New Relic还提供了页面渲染时间的深入分析,有助于发现并优化页面加载速度。
arduino如何输出一个数组?如位置坐标(x,y).不是赋值而是输出。
可以试一下把println(x,y);改成:
print("("); print(x); print(","); print(y); println(")");
把数组拆分输出
还在用Zipkin分布式服务链路追踪?来试试这个吧!
微服务架构的兴起,为全球企业带来了转型的机遇与挑战。微服务的双刃剑效应,在带来诸多优势的同时,亦对运维、性能监控及错误排查提出了严峻考验。面对大型项目中服务节点的繁多与请求链路的复杂,分布式系统的APM管理系统应运而生,旨在帮助理解系统行为,分析性能问题,快速定位和解决问题。
APM系统,全称Application Performance Monitor,是用于监控和管理应用程序性能的工具。谷歌的Dapper论文,作为最早的APM系统原型,为开发者和运维团队提供了强大支持。基于Dapper原理,Pinpoint、SkyWalking等出色APM框架相继问世。SpringCloud官网也集成了一套基于Zipkin的系统:Spring Cloud Sleuth。
APM系统的基本原理主要围绕Google Dapper设计的几个核心概念:Span(请求的基本工作单元)与Trace(一次完整的调用链路,包含多个Span的树状结构,具有唯一的TraceID)。通过spanId、parentId,请求的每个链路得以串联。每次请求从发起至服务器开始,至返回response结束,每个span共享相同的唯一标识trace_id。
在选择APM框架时,主要需考虑以下几方面:探针的性能、收集器的可扩展性、全面的调用链路数据分析能力、对开发的透明性以及对应用拓扑的完整展现。Zipkin、Pinpoint与SkyWalking等框架各有优劣,SkyWalking凭借其在探针性能、开发透明性与数据分析能力上的优势,以及部署的便利性,成为了中小型企业的理想选择。
SkyWalking是一款提供分布式追踪功能的系统,自年起发展成为完整的APM解决方案。它适用于追踪、监控和诊断分布式系统,特别是在使用微服务架构、云原生或容积技术的场景。SkyWalking提供了分布式追踪与上下文传输、应用实例与服务性能指标分析、根源分析、应用拓扑分析、应用和服务依赖分析、慢服务检测、性能优化等主要功能。
其特色包括多语言探针或类库支持、Java自动探针,无需修改源码即可追踪和监控程序、社区提供的其他多语言探针、.NET Core与Node.js支持、多种后端存储选择、与OpenTracing API协同工作、轻量级、完善功能的后端聚合与分析、现代化Web UI、日志集成以及应用、实例和服务的告警。
为了使用SkyWalking,需要先确保Linux环境中的Elasticsearch服务已启动,并开放相应端口。安装过程分为三步:下载安装包、安装Skywalking的OAP服务和WebUI、部署微服务探针。在完成安装后,通过访问WebUI(默认端口为)可查看服务实例的性能监控、服务拓扑图、请求链路追踪信息与表格视图。
本文内容由黑马程序员Java培训学院编写并发布,欢迎转载,但需注明作者及出处,以尊重版权。
2024-11-30 00:43
2024-11-30 00:21
2024-11-29 23:42
2024-11-29 23:15
2024-11-29 23:15
2024-11-29 23:02