【lapack 源码下载】【定制礼品的源码】【智能称重柜 源码】bp网络源码_bp网络原理

2024-11-26 15:27:15 来源:文档开头源码 分类:百科

1.BP网络识别26个英文字母matlab
2.matlab BP神经网络的网络网络训练算法中训练函数(traingdm 、trainlm、源码原理trainbr)的网络网络实现过程及相应的VC源代码
3.区间预测 | Matlab实现BP-ABKDE的BP神经网络自适应带宽核密度估计多变量回归区间预测
4.用c语言编写RBF神经网络程序
5.Android.bp解析与使用看这篇就够了

bp网络源码_bp网络原理

BP网络识别26个英文字母matlab

       字符识别在现代生活中广泛应用,包括车辆牌照识别、源码原理手写识别及办公自动化等。网络网络本文应用BP网络对个英文字母进行识别。源码原理lapack 源码下载首先,网络网络将每个字母数字化处理,源码原理使用7×5的网络网络方格表示,每个位置置1表示对应方格,源码原理其余置0。网络网络

       程序调用步骤如下:复制M文件及字母图标至桌面。源码原理运行shibie.m,网络网络程序生成输入和目标向量后提示进行训练,源码原理点击回车开始训练,网络网络定制礼品的源码训练结果如图1所示。接着,运行shibie2.m,输入图像编号如O的,程序将识别对应字母,以M为例输入,识别结果如图所示。

       总结:基于BP算法的字母识别具有较高的容错性和识别率,在有噪声时,训练出错率相应增加。未来可进一步优化。

       源码部分提供,完整源文件请下载查看。

matlab BP神经网络的智能称重柜 源码训练算法中训练函数(traingdm 、trainlm、trainbr)的实现过程及相应的VC源代码

       VC源代码?你很搞笑嘛。。

       给你trainlm的m码

       function [out1,out2] = trainlm(varargin)

       %TRAINLM Levenberg-Marquardt backpropagation.

       %

       % <a href="matlab:doc trainlm">trainlm</a> is a network training function that updates weight and

       % bias states according to Levenberg-Marquardt optimization.

       %

       % <a href="matlab:doc trainlm">trainlm</a> is often the fastest backpropagation algorithm in the toolbox,

       % and is highly recommended as a first choice supervised algorithm,

       % although it does require more memory than other algorithms.

       %

       % [NET,TR] = <a href="matlab:doc trainlm">trainlm</a>(NET,X,T) takes a network NET, input data X

       % and target data T and returns the network after training it, and a

       % a training record TR.

       %

       % [NET,TR] = <a href="matlab:doc trainlm">trainlm</a>(NET,X,T,Xi,Ai,EW) takes additional optional

       % arguments suitable for training dynamic networks and training with

       % error weights. Xi and Ai are the initial input and layer delays states

       % respectively and EW defines error weights used to indicate

       % the relative importance of each target value.

       %

       % Training occurs according to training parameters, with default values.

       % Any or all of these can be overridden with parameter name/value argument

       % pairs appended to the input argument list, or by appending a structure

       % argument with fields having one or more of these names.

       % show Epochs between displays

       % showCommandLine 0 generate command line output

       % showWindow 1 show training GUI

       % epochs Maximum number of epochs to train

       % goal 0 Performance goal

       % max_fail 5 Maximum validation failures

       % min_grad 1e- Minimum performance gradient

       % mu 0. Initial Mu

       % mu_dec 0.1 Mu decrease factor

       % mu_inc Mu increase factor

       % mu_max 1e Maximum Mu

       % time inf Maximum time to train in seconds

       %

       % To make this the default training function for a network, and view

       % and/or change parameter settings, use these two properties:

       %

       % net.<a href="matlab:doc nnproperty.net_trainFcn">trainFcn</a> = 'trainlm';

       % net.<a href="matlab:doc nnproperty.net_trainParam">trainParam</a>

       %

       % See also trainscg, feedforwardnet, narxnet.

       % Mark Beale, --, ODJ //

       % Updated by Orlando De Jes鷖, Martin Hagan, Dynamic Training 7--

       % Copyright - The MathWorks, Inc.

       % $Revision: 1.1.6..2.2 $ $Date: // :: $

       %% =======================================================

       % BOILERPLATE_START

       % This code is the same for all Training Functions.

        persistent INFO;

        if isempty(INFO), INFO = get_info; end

        nnassert.minargs(nargin,1);

        in1 = varargin{ 1};

        if ischar(in1)

        switch (in1)

        case 'info'

        out1 = INFO;

        case 'check_param'

        nnassert.minargs(nargin,2);

        param = varargin{ 2};

        err = nntest.param(INFO.parameters,param);

        if isempty(err)

        err = check_param(param);

        end

        if nargout > 0

        out1 = err;

        elseif ~isempty(err)

        nnerr.throw('Type',err);

        end

        otherwise,

        try

        out1 = eval(['INFO.' in1]);

        catch me, nnerr.throw(['Unrecognized first argument: ''' in1 ''''])

        end

        end

        return

        end

        nnassert.minargs(nargin,2);

        net = nn.hints(nntype.network('format',in1,'NET'));

        oldTrainFcn = net.trainFcn;

        oldTrainParam = net.trainParam;

        if ~strcmp(net.trainFcn,mfilename)

        net.trainFcn = mfilename;

        net.trainParam = INFO.defaultParam;

        end

        [args,param] = nnparam.extract_param(varargin(2:end),net.trainParam);

        err = nntest.param(INFO.parameters,param);

        if ~isempty(err), nnerr.throw(nnerr.value(err,'NET.trainParam')); end

        if INFO.isSupervised && isempty(net.performFcn) % TODO - fill in MSE

        nnerr.throw('Training function is supervised but NET.performFcn is undefined.');

        end

        if INFO.usesGradient && isempty(net.derivFcn) % TODO - fill in

        nnerr.throw('Training function uses derivatives but NET.derivFcn is undefined.');

        end

        if net.hint.zeroDelay, nnerr.throw('NET contains a zero-delay loop.'); end

        [X,T,Xi,Ai,EW] = nnmisc.defaults(args,{ },{ },{ },{ },{ 1});

        X = nntype.data('format',X,'Inputs X');

        T = nntype.data('format',T,'Targets T');

        Xi = nntype.data('format',Xi,'Input states Xi');

        Ai = nntype.data('format',Ai,'Layer states Ai');

        EW = nntype.nndata_pos('format',EW,'Error weights EW');

        % Prepare Data

        [net,data,tr,~,err] = nntraining.setup(net,mfilename,X,Xi,Ai,T,EW);

        if ~isempty(err), nnerr.throw('Args',err), end

        % Train

        net = struct(net);

        fcns = nn.subfcns(net);

        [net,tr] = train_network(net,tr,data,fcns,param);

        tr = nntraining.tr_clip(tr);

        if isfield(tr,'perf')

        tr.best_perf = tr.perf(tr.best_epoch+1);

        end

        if isfield(tr,'vperf')

        tr.best_vperf = tr.vperf(tr.best_epoch+1);

        end

        if isfield(tr,'tperf')

        tr.best_tperf = tr.tperf(tr.best_epoch+1);

        end

        net.trainFcn = oldTrainFcn;

        net.trainParam = oldTrainParam;

        out1 = network(net);

        out2 = tr;

       end

       % BOILERPLATE_END

       %% =======================================================

       % TODO - MU => MU_START

       % TODO - alternate parameter names (i.e. MU for MU_START)

       function info = get_info()

        info = nnfcnTraining(mfilename,'Levenberg-Marquardt',7.0,true,true,...

        [ ...

        nnetParamInfo('showWindow','Show Training Window Feedback','nntype.bool_scalar',true,...

        'Display training window during training.'), ...

        nnetParamInfo('showCommandLine','Show Command Line Feedback','nntype.bool_scalar',false,...

        'Generate command line output during training.'), ...

        nnetParamInfo('show','Command Line Frequency','nntype.strict_pos_int_inf_scalar',,...

        'Frequency to update command line.'), ...

        ...

        nnetParamInfo('epochs','Maximum Epochs','nntype.pos_int_scalar',,...

        'Maximum number of training iterations before training is stopped.'), ...

        nnetParamInfo('time','Maximum Training Time','nntype.pos_inf_scalar',inf,...

        'Maximum time in seconds before training is stopped.'), ...

        ...

        nnetParamInfo('goal','Performance Goal','nntype.pos_scalar',0,...

        'Performance goal.'), ...

        nnetParamInfo('min_grad','Minimum Gradient','nntype.pos_scalar',1e-5,...

        'Minimum performance gradient before training is stopped.'), ...

        nnetParamInfo('max_fail','Maximum Validation Checks','nntype.strict_pos_int_scalar',6,...

        'Maximum number of validation checks before training is stopped.'), ...

        ...

        nnetParamInfo('mu','Mu','nntype.pos_scalar',0.,...

        'Mu.'), ...

        nnetParamInfo('mu_dec','Mu Decrease Ratio','nntype.real_0_to_1',0.1,...

        'Ratio to decrease mu.'), ...

        nnetParamInfo('mu_inc','Mu Increase Ratio','nntype.over1',,...

        'Ratio to increase mu.'), ...

        nnetParamInfo('mu_max','Maximum mu','nntype.strict_pos_scalar',1e,...

        'Maximum mu before training is stopped.'), ...

        ], ...

        [ ...

        nntraining.state_info('gradient','Gradient','continuous','log') ...

        nntraining.state_info('mu','Mu','continuous','log') ...

        nntraining.state_info('val_fail','Validation Checks','discrete','linear') ...

        ]);

       end

       function err = check_param(param)

        err = '';

       end

       function [net,tr] = train_network(net,tr,data,fcns,param)

        % Checks

        if isempty(net.performFcn)

        warning('nnet:trainlm:Performance',nnwarning.empty_performfcn_corrected);

        net.performFcn = 'mse';

        net.performParam = mse('defaultParam');

        tr.performFcn = net.performFcn;

        tr.performParam = net.performParam;

        end

        if isempty(strmatch(net.performFcn,{ 'sse','mse'},'exact'))

        warning('nnet:trainlm:Performance',nnwarning.nonjacobian_performfcn_replaced);

        net.performFcn = 'mse';

        net.performParam = mse('defaultParam');

        tr.performFcn = net.performFcn;

        tr.performParam = net.performParam;

        end

        % Initialize

        startTime = clock;

        original_net = net;

        [perf,vperf,tperf,je,jj,gradient] = nntraining.perfs_jejj(net,data,fcns);

        [best,val_fail] = nntraining.validation_start(net,perf,vperf);

        WB = getwb(net);

        lengthWB = length(WB);

        ii = sparse(1:lengthWB,1:lengthWB,ones(1,lengthWB));

        mu = param.mu;

        % Training Record

        tr.best_epoch = 0;

        tr.goal = param.goal;

        tr.states = { 'epoch','time','perf','vperf','tperf','mu','gradient','val_fail'};

        % Status

        status = ...

        [ ...

        nntraining.status('Epoch','iterations','linear','discrete',0,param.epochs,0), ...

        nntraining.status('Time','seconds','linear','discrete',0,param.time,0), ...

        nntraining.status('Performance','','log','continuous',perf,param.goal,perf) ...

        nntraining.status('Gradient','','log','continuous',gradient,param.min_grad,gradient) ...

        nntraining.status('Mu','','log','continuous',mu,param.mu_max,mu) ...

        nntraining.status('Validation Checks','','linear','discrete',0,param.max_fail,0) ...

        ];

        nn_train_feedback('start',net,status);

        % Train

        for epoch = 0:param.epochs

        % Stopping Criteria

        current_time = etime(clock,startTime);

        [userStop,userCancel] = nntraintool('check');

        if userStop, tr.stop = 'User stop.'; net = best.net;

        elseif userCancel, tr.stop = 'User cancel.'; net = original_net;

        elseif (perf <= param.goal), tr.stop = 'Performance goal met.'; net = best.net;

        elseif (epoch == param.epochs), tr.stop = 'Maximum epoch reached.'; net = best.net;

        elseif (current_time >= param.time), tr.stop = 'Maximum time elapsed.'; net = best.net;

        elseif (gradient <= param.min_grad), tr.stop = 'Minimum gradient reached.'; net = best.net;

        elseif (mu >= param.mu_max), tr.stop = 'Maximum MU reached.'; net = best.net;

        elseif (val_fail >= param.max_fail), tr.stop = 'Validation stop.'; net = best.net;

        end

        % Feedback

        tr = nntraining.tr_update(tr,[epoch current_time perf vperf tperf mu gradient val_fail]);

        nn_train_feedback('update',net,status,tr,data, ...

        [epoch,current_time,best.perf,gradient,mu,val_fail]);

        % Stop

        if ~isempty(tr.stop), break, end

        % Levenberg Marquardt

        while (mu <= param.mu_max)

        % CHECK FOR SINGULAR MATRIX

        [msgstr,msgid] = lastwarn;

        lastwarn('MATLAB:nothing','MATLAB:nothing')

        warnstate = warning('off','all');

        dWB = -(jj+ii*mu) \ je;

        [~,msgid1] = lastwarn;

        flag_inv = isequal(msgid1,'MATLAB:nothing');

        if flag_inv, lastwarn(msgstr,msgid); end;

        warning(warnstate)

        WB2 = WB + dWB;

        net2 = setwb(net,WB2);

        perf2 = nntraining.train_perf(net2,data,fcns);

        % TODO - possible speed enhancement

        % - retain intermediate variables for Memory Reduction = 1

        if (perf2 < perf) && flag_inv

        WB = WB2; net = net2;

        mu = max(mu*param.mu_dec,1e-);

        break

        end

        mu = mu * param.mu_inc;

        end

        % Validation

        [perf,vperf,tperf,je,jj,gradient] = nntraining.perfs_jejj(net,data,fcns);

        [best,tr,val_fail] = nntraining.validation(best,tr,val_fail,net,perf,vperf,epoch);

        end

       end

区间预测 | Matlab实现BP-ABKDE的BP神经网络自适应带宽核密度估计多变量回归区间预测

       本文介绍了一种利用BP神经网络自适应带宽核密度估计进行多变量回归区间预测的方法,该方法在Matlab平台上实现,并提供完整的源代码和数据集,方便用户学习和应用。

       在多变量回归分析中,预测结果常常伴随着不确定性,而区间预测能够提供预测值的可信区间,帮助决策者做出更加合理的决策。本文提出的BP神经网络自适应带宽核密度估计方法,能够有效解决多变量回归中的不确定性问题。通过自适应调整带宽参数,项目源码在哪里该方法能更准确地估计核密度,从而提高预测的精度。

       实现该方法的Matlab代码支持点预测、概率预测和核密度估计,覆盖了预测分析的主要方面。适用于多变量单输出的预测任务,提供多种置信区间,包括常见的R2、MAE、RMSE、MAPE、区间覆盖率(PICP)和区间平均宽度百分比(PINAW)评价指标,帮助用户评估预测结果的准确性和可靠性。

       该方法改进了固定带宽核函数,西瓜同城分类源码使其更具适应性和灵活性,提高了预测性能。代码实现简洁明了,参数化编程使得用户可以根据需要方便地调整参数,代码结构清晰,注释详尽,适合各个水平的用户学习和使用。直接替换Excel数据即可运行,一键生成预测结果和图表,提供直观的分析结果。

       总结,本文提出的BP神经网络自适应带宽核密度估计多变量回归区间预测方法,不仅提供了强大的预测功能,还简化了实现过程,极大地降低了学习和应用的门槛。适用于各种多变量回归预测任务,特别适用于需要考虑预测不确定性的场景。

用c语言编写RBF神经网络程序

       RBF网络能够逼近任意的非线性函数,可以处理系统内的难以解析的规律性,具有良好的泛化能力,并有很快的学习收敛速度,已成功应用于非线性函数逼近、时间序列分析、数据分类、模式识别、信息处理、图像处理、系统建模、控制和故障诊断等。

       简单说明一下为什么RBF网络学习收敛得比较快。当网络的一个或多个可调参数(权值或阈值)对任何一个输出都有影响时,这样的网络称为全局逼近网络。由于对于每次输入,网络上的每一个权值都要调整,从而导致全局逼近网络的学习速度很慢。BP网络就是一个典型的例子。

       如果对于输入空间的某个局部区域只有少数几个连接权值影响输出,则该网络称为局部逼近网络。常见的局部逼近网络有RBF网络、小脑模型(CMAC)网络、B样条网络等。

       附件是RBF神经网络的C++源码。

Android.bp解析与使用看这篇就够了

       Android.bp解析与使用看这篇就够了

       争取每一篇文章都是精华,后期维护确保文章质量。Android.bp配置文件提供更高效的并发编译能力,取代了Android.mk方式。

       Android.bp与Android.mk的区别在于,前者为纯配置文件,支持条件判断宏定义,而后者则包含流程控制。Android.bp最终将生成Ninja格式文件以进行编译。

       Android.mk可转换为Android.bp,通过Soong中的androidmk命令实现,但若包含分支、循环等流程控制,则需手动转换。

       Android.mk自动转换Android.bp的步骤如下:将Android.mk文件放置到指定目录,执行androidmk命令生成Android.bp文件。

       Android.mk手动转换Android.bp时,需参照mk与bp映射表进行变量名对应。

       Android.bp详细解析:介绍常用库函数、编译不同类型的模块、文件路径、库依赖、安装到不同分区、编译参数等。

       Android.bp案例实战:项目目录结构说明,包括引入aar、编译APK、引入so库等实践操作。

       AOSP编译错误汇总:整理重要注意事项、错误原因及解决方法,如Android.mk与Android.bp的引用限制、类型不匹配、依赖问题等。

       Android.mk与Android.bp对应关系:列出Android源码下的对应关系,便于快速查找和理解。

       致谢与引用:感谢文章参考者和推荐系列文章,尊重版权,鼓励技术分享。

本文地址:http://0553.net.cn/news/64c671093225.html 欢迎转发