本站提倡有节制游戏,合理安排游戏时间,注意劳逸结合。

【工单 系统源码】【量化捕鱼公式源码】【突破上轨指标源码】图像 识别 源码

2024-11-30 06:24:19 来源:娱乐 分类:娱乐

1.JS识别照片或中的图像二维码 -OpencvQr
2.轻松理解ViT(Vision Transformer)原理及源码
3.10分钟!用Python实现简单的识别人脸识别技术(附源码)
4.图源码是什么
5.有一张人脸的侧脸图像,如何用python及相关的源码库来计算人脸转过的角度。

图像 识别 源码

JS识别照片或中的图像二维码 -OpencvQr

       已将构建的opencvjs库封装为npm包 opencv-qr@0.5.0 。可直接安装使用!识别!源码工单 系统源码!图像

       场景:

       介绍一种在线识别发票照片中的识别二维码方法,通过使用本地编译的源码OpenCV库并集成wechat_qrcode引擎,实现对复杂场景下二维码的图像高精度识别。该方法在线测试地址为:leidenglai.github.io/op...

       源码: leidenglai/opencv-js-qrcode · GitHub

       加载二维码识别引擎:

       采用本地编译的识别OpenCV和wechat_qrcode组件构建二维码识别引擎。在选择过程中,源码对比了多种二维码识别库,图像最终选择了OpenCV,识别因其实现了WebAssembly版本,源码适合在线环境使用。经过多次尝试和解决编译问题后,实现了三方组件的集成。识别引擎加载完成后,通过window.cv调用OpenCV方法。

       加载模型文件:

       识别引擎依赖于特定的CNN模型文件,包括Detector model和Super scale model。这些文件在GitHub上获得,用于加载到引擎中进行图像解析。加载过程涉及将模型文件转换为Uint8Array,并调用特定方法实例化引擎。

       识别过程:

       针对特定需求,优化了图像加载过程,仅截取左上角的发票二维码区域,以提高识别效率。量化捕鱼公式源码实测结果显示,OpenCV在处理复杂场景下图像时,识别准确率高且耗时相对较短,对比jsqr库,OpenCV性能更优。

       识别旋转二维码:

       即使被旋转或图像质量不佳,OpenCV仍然能准确识别二维码。与jsqr库相比,OpenCV在处理旋转图像方面表现更为出色。

       电子二维码识别:

       对于电子发票,OpenCV同样能高效识别二维码信息。与QRjs库相比,OpenCV在电子二维码识别场景下表现良好,但在效率上略有差异。

       浏览器兼容性:

       考虑到WebAssembly的兼容性,现代浏览器普遍支持OpenCV库,使得该方法在不同环境下均能稳定运行。

       总结:

       使用本地编译的OpenCV和wechat_qrcode组件构建的识别引擎,适合处理复杂场景下的二维码识别需求。虽然编译过程较为繁琐,但OpenCV提供了强大的图像处理能力,扩展了前端的识别应用范围。WebAssembly特性的引入,为前端开发者提供了更多可能性,推动了技术的边界。

轻松理解ViT(Vision Transformer)原理及源码

       ViT,即Vision Transformer,是将Transformer架构引入视觉任务的创新。源于NLP领域的突破上轨指标源码Transformer,ViT在图像识别任务中展现出卓越性能。理解ViT的原理和代码实现在此关键点上进行。

       ViT的核心流程包括图像分割为小块、块向量化、多层Transformer编码。图像被分为大小为x的块,块通过卷积和展平操作转换为向量,最终拼接形成序列。序列通过多层Transformer编码器处理,编码器包含多头自注意力机制和全连接前馈网络,实现特征提取和分类。模型输出即为分类结果。

       具体实现上,Patch Embedding过程通过卷积和展平简化,将大小为x的图像转换为x的向量序列。Transformer Encoder模块包括Attention类实现注意力机制,以及Mlp类处理非线性变换。Block类整合了这两个模块,实现完整的编码过程。

       VisionTransformer整体架构基于上述模块构建,流程与架构图保持一致。代码实现包括关键部分的细节,完整代码可参考相关资源。

       综上所述,ViT通过将图像分割与Transformer架构相结合,实现高效图像识别。理解其原理和代码,有助于深入掌握这一创新技术。

分钟!redis源码怎么实现用Python实现简单的人脸识别技术(附源码)

       Python实现简单的人脸识别技术,主要依赖于Python语言的胶水特性,通过调用特定的库包即可实现。这里介绍的是一种较为准确的实现方法。实现步骤包括准备分类器、引入相关包、创建模型、以及最后的人脸识别过程。首先,需确保正确区分人脸的分类器可用,可以使用预训练的模型以提高准确度。所用的包主要包括:CV2(OpenCV)用于图像识别与摄像头调用,os用于文件操作,numpy进行数学运算,PIL用于图像处理。

       为了实现人脸识别,需要执行代码以加载并使用分类器。执行“face_detector = cv2.CascadeClassifier(r'C:\Users\admin\Desktop\python\data\haarcascade_frontalface_default.xml')”时,确保目录名中无中文字符,以免引发错误。这样,程序就可以识别出目标对象。

       然后,选择合适的算法建立模型。本次使用的是OpenCV内置的FaceRecognizer类,包含三种人脸识别算法:eigenface、fisherface和LBPHFaceRecognizer。LBPH是一种纹理特征提取方式,可以反映出图像局部的股票笑脸指标源码纹理信息。

       创建一个Python文件(如trainner.py),用于编写数据集生成脚本,并在同目录下创建一个文件夹(如trainner)存放训练后的识别器。这一步让计算机识别出独特的人脸。

       接下来是识别阶段。通过检测、校验和输出实现识别过程,将此整合到一个统一的文件中。现在,程序可以识别并确认目标对象。

       通过其他组合,如集成检测与开机检测等功能,可以进一步扩展应用范围。实现这一过程后,你将掌握Python简单人脸识别技术。

       若遇到问题,首先确保使用Python 2.7版本,并通过pip安装numpy和对应版本的opencv。针对特定错误(如“module 'object' has no attribute 'face'”),使用pip install opencv-contrib-python解决。如有疑问或遇到其他问题,请随时联系博主获取帮助。

图源码是什么

       图源码是图像的源代码。

       详细解释如下:

       图源码的概念

       图源码,顾名思义,指的是图像的源代码。这通常涉及到图像的处理、生成或编辑所使用的编程语言和代码。在数字时代,随着计算机技术的发展,越来越多的图像处理和编辑工作依赖于软件编程。这些源代码可能是为了生成特定的图像效果、实现某种图像算法或者是进行图像的数据分析。

       图源码的内容

       图源码的具体内容会依据其用途和平台而有所不同。例如,在网页开发中,图源码可能涉及到HTML标签定义图像的属性,如大小、位置等,同时可能包含CSS样式来美化图像外观。如果是图像处理软件中的图源码,可能涉及到图像处理算法、滤镜效果等,使用特定的编程语言编写。此外,一些高级的图形应用如游戏开发中的图像渲染,源码可能包含复杂的图形处理算法和计算逻辑。

       应用场景

       图源码广泛应用于多个领域。在网站开发中,设计师或开发者使用图源码来创建具有吸引力和响应式的网页图像。在图像处理领域,摄影师或设计师使用图源码来实现各种图像编辑效果。在游戏开发领域,图源码是实现高质量图像渲染和动画的关键部分。此外,随着人工智能和机器学习的发展,图源码也在图像识别、数据分析等领域发挥着重要作用。

       总的来说,图源码是处理、编辑和实现图像效果的关键工具,其内容和应用取决于具体的使用场景和平台。随着技术的进步,图源码的应用将越来越广泛。

有一张人脸的侧脸图像,如何用python及相关的库来计算人脸转过的角度。

       这个很难办到,不过可以通过判断关键点的特点进行判断,但是准确率不高

       前言

       很多人都认为人脸识别是一项非常难以实现的工作,看到名字就害怕,然后心怀忐忑到网上一搜,看到网上N页的教程立马就放弃了。这些人里包括曾经的我自己。其实如果如果你不是非要深究其中的原理,只是要实现这一工作的话,人脸识别也没那么难。今天我们就来看看如何在行代码以内简单地实现人脸识别。

       一点区分

       对于大部分人来说,区分人脸检测和人脸识别完全不是问题。但是网上有很多教程有无无意地把人脸检测说成是人脸识别,误导群众,造成一些人认为二者是相同的。其实,人脸检测解决的问题是确定一张图上有木有人脸,而人脸识别解决的问题是这个脸是谁的。可以说人脸检测是是人识别的前期工作。今天我们要做的是人脸识别。

       所用工具

       Anaconda 2——Python 2

       Dlib

       scikit-image

       Dlib

       对于今天要用到的主要工具,还是有必要多说几句的。Dlib是基于现代C++的一个跨平台通用的框架,作者非常勤奋,一直在保持更新。Dlib内容涵盖机器学习、图像处理、数值算法、数据压缩等等,涉猎甚广。更重要的是,Dlib的文档非常完善,例子非常丰富。就像很多库一样,Dlib也提供了Python的接口,安装非常简单,用pip只需要一句即可:

       pip install dlib

       上面需要用到的scikit-image同样只是需要这么一句:

       pip install scikit-image

       注:如果用pip install dlib安装失败的话,那安装起来就比较麻烦了。错误提示很详细,按照错误提示一步步走就行了。

       人脸识别

       之所以用Dlib来实现人脸识别,是因为它已经替我们做好了绝大部分的工作,我们只需要去调用就行了。Dlib里面有人脸检测器,有训练好的人脸关键点检测器,也有训练好的人脸识别模型。今天我们主要目的是实现,而不是深究原理。感兴趣的同学可以到官网查看源码以及实现的参考文献。今天的例子既然代码不超过行,其实是没啥难度的。有难度的东西都在源码和论文里。

       首先先通过文件树看一下今天需要用到的东西:

       准备了六个候选人的放在candidate-faces文件夹中,然后需要识别的人脸test.jpg。我们的工作就是要检测到test.jpg中的人脸,然后判断她到底是候选人中的谁。另外的girl-face-rec.py是我们的python脚本。shape_predictor__face_landmarks.dat是已经训练好的人脸关键点检测器。dlib_face_recognition_resnet_model_v1.dat是训练好的ResNet人脸识别模型。ResNet是何凯明在微软的时候提出的深度残差网络,获得了 ImageNet 冠军,通过让网络对残差进行学习,在深度和精度上做到了比

       CNN 更加强大。

       1. 前期准备

       shape_predictor__face_landmarks.dat和dlib_face_recognition_resnet_model_v1.dat都可以在这里找到。

       然后准备几个人的人脸作为候选人脸,最好是正脸。放到candidate-faces文件夹中。

       本文这里准备的是六张,如下:

       她们分别是

       然后准备四张需要识别的人脸图像,其实一张就够了,这里只是要看看不同的情况:

       可以看到前两张和候选文件中的本人看起来还是差别不小的,第三张是候选人中的原图,第四张微微侧脸,而且右侧有阴影。

       2.识别流程

       数据准备完毕,接下来就是代码了。识别的大致流程是这样的:

       3.代码

       代码不做过多解释,因为已经注释的非常完善了。以下是girl-face-rec.py

       # -*- coding: UTF-8 -*-

       import sys,os,dlib,glob,numpy

       from skimage import io

       if len(sys.argv) != 5:

       print "请检查参数是否正确"

       exit()

       # 1.人脸关键点检测器

       predictor_path = sys.argv[1]

       # 2.人脸识别模型

       face_rec_model_path = sys.argv[2]

       # 3.候选人脸文件夹

       faces_folder_path = sys.argv[3]

       # 4.需识别的人脸

       img_path = sys.argv[4]

       # 1.加载正脸检测器

       detector = dlib.get_frontal_face_detector()

       # 2.加载人脸关键点检测器

       sp = dlib.shape_predictor(predictor_path)

       # 3. 加载人脸识别模型

       facerec = dlib.face_recognition_model_v1(face_rec_model_path)

       # win = dlib.image_window()

       # 候选人脸描述子list

       descriptors = []

       # 对文件夹下的每一个人脸进行:

       # 1.人脸检测

       # 2.关键点检测

       # 3.描述子提取

       for f in glob.glob(os.path.join(faces_folder_path, "*.jpg")):

       print("Processing file: { }".format(f))

       img = io.imread(f)

       #win.clear_overlay()

       #win.set_image(img)

       # 1.人脸检测

       dets = detector(img, 1)

       print("Number of faces detected: { }".format(len(dets)))

       for k, d in enumerate(dets):

       # 2.关键点检测

       shape = sp(img, d)

       # 画出人脸区域和和关键点

       # win.clear_overlay()

       # win.add_overlay(d)

       # win.add_overlay(shape)

       # 3.描述子提取,D向量

       face_descriptor = facerec.compute_face_descriptor(img, shape)

       # 转换为numpy array

       v = numpy.array(face_descriptor)

       descriptors.append(v)

       # 对需识别人脸进行同样处理

       # 提取描述子,不再注释

       img = io.imread(img_path)

       dets = detector(img, 1)

       dist = []

       for k, d in enumerate(dets):

       shape = sp(img, d)

       face_descriptor = facerec.compute_face_descriptor(img, shape)

       d_test = numpy.array(face_descriptor)

       # 计算欧式距离

       for i in descriptors:

       dist_ = numpy.linalg.norm(i-d_test)

       dist.append(dist_)

       # 候选人名单

       candidate = ['Unknown1','Unknown2','Shishi','Unknown4','Bingbing','Feifei']

       # 候选人和距离组成一个dict

       c_d = dict(zip(candidate,dist))

       cd_sorted = sorted(c_d.iteritems(), key=lambda d:d[1])

       print "\n The person is: ",cd_sorted[0][0]

       dlib.hit_enter_to_continue()

       4.运行结果

       我们在.py所在的文件夹下打开命令行,运行如下命令

       python girl-face-rec.py 1.dat 2.dat ./candidate-faecs test1.jpg

       由于shape_predictor__face_landmarks.dat和dlib_face_recognition_resnet_model_v1.dat名字实在太长,所以我把它们重命名为1.dat和2.dat。

       运行结果如下:

       The person is Bingbing。

       记忆力不好的同学可以翻上去看看test1.jpg是谁的。有兴趣的话可以把四张测试都运行下试试。

       这里需要说明的是,前三张图输出结果都是非常理想的。但是第四张测试的输出结果是候选人4。对比一下两张可以很容易发现混淆的原因。

       机器毕竟不是人,机器的智能还需要人来提升。

       有兴趣的同学可以继续深入研究如何提升识别的准确率。比如每个人的候选用多张,然后对比和每个人距离的平均值之类的。全凭自己了。

相关推荐
一周热点