【ico众筹源码】【前端源码打包apk】【iptv直播后台源码】eventbus 3.0源码
1.Vert.x 源码解析(4.x)——Local EvnentBus入门使用和源码解析
2.消息框架 EventBus 的源码实现原理
3.Android开发APT技术,与使用案例
4.Android开发八大模块学习笔记,源码带你初探Android系统开发全貌
5.说下你可能没用过的源码EventBus
6.Androidå¼å-EventBus使ç¨è¯¦è§£
Vert.x 源码解析(4.x)——Local EvnentBus入门使用和源码解析
Vert.x 源码解析(4.x)——Local EvnentBus入门使用和源码解析 本文将介绍使用和解析Vert.x的本地事件总线(Local EvnentBus)的基本概念、入门使用方法以及源码解析。源码1. 简介
Vert.x EventBus是源码一个用于异步通信的分布式事件总线,支持在同个Vert.x应用程序内部或跨多个Vert.x应用程序之间的源码ico众筹源码消息交互,实现组件、源码模块或服务之间的源码松耦合与高度可扩展性。2. 基本概念
EventBus分为Local模式和Clustered模式,源码Local模式适用于项目内部通信,源码而Clustered模式用于集群间传输。源码3. 入门使用
3.1 获取EventBus
每个Vertx实例仅有一个EventBus实例,源码可使用注册处理器、源码调用consumer()方法获取MessageConsumer对象。源码 在集群模式下注册处理器时,源码注册信息传播至集群中所有节点可能需要时间。3.2 注销处理器
通过unregister方法注销处理器,在集群模式下,此动作传播至节点可能需要额外时间,可使用回调完成通知。3.3 发布消息
使用publish方法指定地址发布消息,消息将传递给所有在该地址注册的处理器。3.4 发送消息
使用send方法发送消息至指定地址的单个处理器。3.5 设置消息头
在发送或publish消息时可提供DeliveryOptions来设置头信息。3.6 消息顺序
消息按发送顺序传递给处理器。3.7 消息对象
消息处理器接收到的对象类型为Message,包含消息体和头信息。3.8 应答消息/发送回复
通过reply方法在处理器接收到消息后发送回复至消息来源,确认处理。前端源码打包apk3.9 带超时的发送
使用DeliveryOptions指定超时时间,若超时未收到回复,则调用应答处理器。3. 发送失败
消息发送失败时,应答处理器将接收到异常失败结果。3. 消息编解码器
注册消息编解码器支持发送任何对象,通过DeliveryOptions指定对象类型。3. 集群模式的Event Bus
将多个Vert.x实例组合为集群,实现分布式Event Bus。4. 关键类简介
4.1 主要类的作用
EventBus、EventBusInternal、EventBusImpl: EventBus接口定义方法,EventBusImpl实现管理消息、监听器注册、消息派发等功能,异步操作。 HandlerRegistration、MessageConsumerImpl: 消费者实现类,管理订阅关系与消息派发。 DeliveryContextBase、InboundDeliveryContext、OutboundDeliveryContext: 消息传递管理类,处理发送和接收过程。4.2 EventBus系列
EventBus、EventBusInternal: EventBus接口,EventBusImpl实现。4.3 MessageConsumer系列
MessageConsumerImpl实现消息消费与订阅管理。4.4 DeliveryContext系列
DeliveryContextBase管理消息传递过程,iptv直播后台源码InboundDeliveryContext处理接收消息,OutboundDeliveryContext处理发送消息。4.5 Message系列
Message实现消息对象,MessageImpl具体实现。4.5.3 MessageCodec系列
CodecManager获取解码器,lookupCodec方法实现消息解码。5. Local模式EventBus源码解析
5.1 consumer方法分析
绑定时调用consumer方法,创建MessageConsumerImpl实例。5.2 handler
注册处理器,涉及HandlerRegistration、EventBusImpl等类。5.3 send
发送消息,EventBusImpl类实现,包括创建消息、发送上下文等。5.4 reply
回复消息,与send方法类似。5.5 总结
本地事件总线操作简单,消息发布与发送遵循明确的步骤。回复消息与发送类似,关键在于消息处理与应答机制。消息框架 EventBus 的实现原理
免费获取网络安全入门到进阶学习资源 点击此链接:网络安全入门到进阶全套G学习资源包免费分享! 事件总线(EventBus)的使用 EventBus 是用于 Android 的事件发布-订阅机制,简化了组件间通信,尤其是碎片间通信。它有三个关键角色:事件(Event)、订阅者(Subscriber)和发布者(Publisher)。事件可以是政采商城源码任意类型,订阅者处理事件,发布者发布事件,通常使用 `EventBus.getDefault().post(event)` 发布。EventBus 3.0 及以后版本允许自定义事件处理方法名,并通过 `@subscribe` 注解指定线程模型。 事件线程模型包括:POSTING:事件处理在发布事件的线程中。
MAIN:事件处理在主线程(UI)中,避免耗时操作。
BACKGROUND:事件处理在后台线程中,同样避免UI操作。
ASYNC:无论线程如何,事件处理始终在新线程中,UI操作受限。
使用 EventBus 的例子包括事件注册、发布与监听。 优先级控制在 `@subscribe` 中通过 `priority` 参数调整,影响事件处理顺序。`stopDelivery` 方法用于终止事件分发,确保优先级高的方法优先接收。 源码分析关注 EventBus 实例获取、注册、取消注册与事件触发过程。 网络安全成长路径 从基础技术学习到更高级别技能,网络安全学习路线分为多阶段。入门阶段掌握基本知识和工具,随后深入学习系统、网络、安全策略、宝塔主图源码编程语言等,最终提升至高级别威胁分析、安全策略设计和实施。 学习方法包括视频教程、实践练习和持续更新知识库。CSDN官方提供了免费的入门到进阶全套G学习资源包,涵盖理论、实践和案例分析。Android开发APT技术,与使用案例
annotationProcessor,全称为 APT,即 Annotation Processor Tool,这一工具在 Java 编译过程中,负责扫描和处理注解,获取注解信息与被注解对象的相关数据,进而自动生成 Java 代码。APT 在编译时介入,对源代码进行处理,提高代码执行性能,避免重复的代码编写。 ButterKnife、EventBus、ARouter、GreenDAO 等 Android 开发框架均使用了 APT 技术。在 ARouter 框架中,路由表的生成过程利用了 APT 技术,这一表在运行时生成,用于填充 WareHouse 路由元信息。 APT 的主要作用是在编译阶段,即在 Java 源代码转换为 class 文件,并最终生成 dex 文件打入 APK 包中时,处理注解。APT 的作用分为两部分:第一,它在编译开始时介入,处理编译时注解;第二,AOP(Aspect Oridnted Programming)则在编译完成后、生成 dex 文件之前,通过修改 .class 文件,实现代码的修改或添加逻辑,常用于代码监控、修改与分析等场景。 APT 的使用能实现如下效果:减少重复代码编写,通过注解自动完成,如 Butterknife 可以直接通过注解表示 view ID,无需重复的手动编写代码;获取注解及生成代码均在编译时完成,相比于运行时通过反射处理注解,能显著提升程序性能。 APT 不能修改源文件,只能获取注解信息与被注解对象信息,并进行自定义处理。宏观上,APT 是 Java 编译器提供给开发者在编译时处理注解的技术,微观上,具体应用即为继承自 AbstractProcessor 的实现类。 APT 的原理在于,Java 源码编译至 class 文件的过程中,需要经过注解处理器处理,处理器生成的代码同样会经历这一过程,最终生成 class 文件。在 Android 环境中,class 文件被打包为 dex 文件,最后形成 APK 文件。 实现一个基于 APT 的实例,类似于 Butterknife 中的 @BindView 注解,主要步骤包括定义注解、创建注解处理器以及调用处理器生成的代码。实现过程中,需要构建如下的工程结构:app:测试功能
apt-annotation:自定义注解模块
apt-processor:注解处理器模块
apt-sdk:通过反射调用 apt-processor 生成方法的模块
构建步骤如下:在 apt-annotation 中定义自定义注解。
在 apt-processor 中引入依赖,依赖 apt-annotation 并需要依赖 auto-service 第三方库,用于创建注解处理器。
在 apt-processor/build.gradle 文件中创建注解处理器。
处理器需继承 AbstractProcessor。
代码编写中避免使用中文,否则可能无法编译。
ClassCreatorFactory 类负责提供生成新类所需代码。
app 的 gradle 文件中引入相关依赖。
两个 Activity 中调用相关方法。
检查目录生成文件。
在 app 中调用 apt-sdk 的方法。
APT 技术在 Android 开发中的应用解析至此,更多 Android 开发技术可参考《Android 核心技术手册》。Android开发八大模块学习笔记,带你初探Android系统开发全貌
Android操作系统,自Andy Rubin开发以来,逐渐由Google收购并拓展至包括智能手机、平板电脑在内的多个领域,以其免费、智能和开放性在全球市场份额中占据重要地位。 Android系统庞大,学习内容繁杂,本文将通过八大模块深入讲解,旨在带领初学者全面了解Android系统架构及其运作机制,构建坚实的技术基础。架构师筑基必备技能
深入理解Java泛型
注解使用详解
并发编程实践
数据传输与序列化技术
Java虚拟机原理探索
高效IO操作
Android百大框架源码解析
Retrofit 2.0源码剖析
Okmand.run()你就会发现这其实是同步执行。
同步执行并不太好。我们希望不仅解耦,还要异步执行。EventBus提供了AsyncEventBus,我们可以自己传入executor。
上面的代码我们改成异步的,这样不就好起来了嘛。实际上,我们可以结合自己的线程池来处理。
OK,这个说清楚了。我们可以顺便再看看事件分发的处理。看到DeadEvent了吗?没有当前事件的订阅者,就会发送一个DeadEvent事件,bingo!
OK,这个使用和源码都比较简单,有兴趣的同学可以自己去看看,花不了多少功夫。
总的来说,EventBus提供了一个更优雅的代码解耦方式,你在实际工作中的业务中肯定能用得上它!
Androidå¼å-EventBus使ç¨è¯¦è§£
æ们大家å¨ä½¿ç¨EventBusçæ¶åï¼éè¦äºè§£ä»çé»è¾åçï¼ä¸å¿ äºè§£å®çæºç ï¼é£ä¹é«æ·±ãæ以æå°±å¨è¿éä¸è®²æºç äº!é¦å EventBusæ¯ä¸ä¸ªè®¢é è 模å¼ï¼ä¹å°±æ¯åæä»¬å ³æ³¨ä¸ä¸ªå¾®ä¿¡å ¬ä¼å·ä¸æ ·ï¼å ¬ä¼å·æ¯åæ¶æ¯è ï¼æä»¬å ³æ³¨è¯¥å ¬ä¼å·ç人就æ¯è®¢é ç人ï¼ä¹å°±æ¯æ¶æ¶æ¯çãå ¬ä¼å·åªè¦ä¸ææ°çæ¶æ¯æ¨éï¼æ们ç微信就ä¼å¼¹åºä¸æ¡å ¬ä¼å·æåçæ¶æ¯ï¼è¿å°±åEventBusé»è¾ä¸æ ·ã
é¦å æ们使ç¨EventBusæ¶éè¦æ³¨åï¼å ·ä½å¨ä»ä¹æ¶é´æ³¨åï¼æ ¹æ®èªå·±çéè¦å»æ³¨åï¼å¦æä¸æ³¨åï¼EventBuså°±æ æ³æ£å¸¸åéæ¶æ¯ï¼
æ¥æ¶è ä¹å°±æ æ³æ¥æ¶å°åéçæ¶æ¯ï¼æç项ç®æ¯ç¨EventBusä¼ å¼ï¼æ以æå°±åå¨Baseç±»ä¸äºï¼ä¸è¿ä½ 们ådemoçè¯å¯ä»¥åå¨onCreateä¸ã
EventBus注å
EventBusåæ¶æ³¨åï¼ä¸è¬æ们åå¨onDestroyä¸ï¼æè onStopä¸ï¼ä¸è¿æé½æ¯åå¨onDestroyä¸ï¼
æ£å¸¸ä½¿ç¨åéæ¶æ¯ï¼æè¿éçHomeFragmentRequest å°±æ¯ä¸ä¸ªBeanç±»ï¼æ们å¯ä»¥å®ä¹æ®éç±»åæ°æ®ï¼åªä¸è¿åéä»ä¹ç±»åï¼æ们就è¦ç¨ä»ä¹ç±»åå»æ¥æ¶
æ£å¸¸æ¥æ¶æ¶æ¯ï¼ä¹å°±æ¯æ¥æ¶åéè¿æ¥çæ¶æ¯(æ¹æ³åèªå®ä¹ï¼ä¸å®è¦ç¨åéè¿æ¥çæ°æ®ç±»å#å¿ é¡»å¸¦ä¸æ³¨è§£#)
ç²æ§äºä»¶çåéæ¹å¼
æ人çå°äºï¼æ¥ååæ®éæ¥åä¸æ ·åªä¸è¿å¨æ³¨è§£çåé¢å äºç¹ä½æ,è¿æ ·æ们就è½å¨å建åä¿åï¼å建ä¹å使ç¨ä¼ éè¿æ¥çæ°æ®å¦
Vert.x 源码解析(4.x)——Context源码解析
Vert.x 4.x 源码深度解析:Context核心概念详解 Vert.x 通过Context这一核心机制,解决了多线程环境下的资源管理和状态维护难题。Context在异步编程中扮演着协调者角色,确保线程安全的资源访问和有序的异步操作。本文将深入剖析Context的源码结构,包括其接口设计、关键实现以及在Vert.x中的具体应用。Context源代码解析
Context接口定义了基础的事件处理功能,如立即执行和阻塞任务。ContextInternal扩展了Context,包含内部方法和功能,通常开发者无需直接接触,如获取当前线程的Context。在vertx的beginDispatch和endDispatch方法中,Context的切换策略取决于线程类型,Vertx线程会使用上下文切换,而非Vertx线程则依赖ThreadLocal。 ContextBase是ContextInternal的实现类,负责执行耗时任务,内部包含TaskQueue来管理任务顺序。WorkerContext和EventLoopContext分别对应工作线程和EventLoop线程的执行策略,它们通过execute()、runOnContext()和emit()方法处理任务,同时监控性能。 Context的创建和获取贯穿于Vert.x的生命周期,它在DeploymentManager的doDeploy方法中被调用,如NetServer和NetClient等组件的底层实现也依赖于Context来处理网络通信。额外说明
Context与线程并非直接绑定,而是根据场景动态管理。部署时创建新Context,非部署时优先获取Thread和ThreadLocal中的Context。当执行异步任务时,当前线程的Context会被暂时替换,任务完成后才恢复。源码中已加入详细注释,如需获取完整注释版本,可联系作者。 Context的重要性在于其在Vert.x的各个层面如服务器部署、EventBus通信中不可或缺,它负责维护线程同步与异步任务的执行顺序,是异步编程中不可或缺的基石。理解Context的实现,有助于更好地利用Vert.x进行高效开发。