只用十分钟判定某个虚拟币的真假——币圈小白防坑指南
在币圈,如何仅用十分钟判断某个虚拟币的源码源码真伪?以下是为币圈小白准备的防坑指南,通过几个简单的标志标志步骤,你可以提高识别假区块链项目的识别识别准确性。
1. 查看项目官方网站底部的源码源码云南到缅甸源码官方认证图标。正规的标志标志公链项目通常会在网站底部展示官方认证图标。如果找不到类似小猫图标的识别识别标志,该项目很可能不是源码源码真正的区块链项目。
2. 检查GitHub上的标志标志项目关注度和克隆数。访问项目主页,识别识别查看右上角的源码源码星星(star)和叉子(fork)图标。如果这两个数值都是标志标志零,那么该项目很可能是识别识别一个山寨的区块链项目。
3. 确认项目是源码源码否在coinmarketcap上有记录。在coinmarketcap网站上搜索该项目名称,如果找不到或者官网地址与coinmarketcap上显示的不一致,该项目可能是假的。
4. 验证项目源码是否开源。真正的区块链项目会在GitHub等开源平台上公布源码。如果主页上找不到源码链接,该项目很可能是假的。
5. 注意项目方的误导行为。一些项目方可能会在GitHub上放置看似专业的区块链源码,但小白用户可以通过检查star和fork数值来识别。如果这两个数值的总和非常低,那么该项目可能技术含量不高。
6. 警惕只有手机钱包而缺乏其他组件的项目,或只有中文主页而没有英文主页和开源地址的项目。这些通常是假区块链项目的特征。
在投资前,花十分钟进行这些检查,可以帮助你避免落入陷阱。希望这份指南能帮助你更明智地参与币圈。
熊猫烧香病毒源代码
揭示熊猫烧香病毒的神秘面纱:Delphi源代码解析 **病毒核心代码片段**: 在熊猫烧香这款臭名昭著的病毒中,其Delphi编写的源代码揭示出一项狡猾的策略。以下是一些关键部分的概述:病毒体结构:病毒体大小(HeaderSize)惊人地达到了,字节,足以容纳其恶意功能。主图标(IconOffset)的位置在未压缩状态下为EB8,压缩时为BC,大小(IconSize)为字节,是其伪装身份的标志。
感染标志:**熊猫烧香使用独特标记$,作为其感染目标的识别符。
垃圾码(Catchword):**一个包含反日言论的视频录制软件源码长字符串,被用作破坏文件时的乱码混淆手段。
病毒的行动机制中,ExtractFile函数负责将病毒从宿主程序中分离,FillStartupInfo则为后续邮件传播做好准备。而SendMail虽未详尽,但可推测其核心作用在于通过电子邮件传播病毒。 恶意感染过程**:InfectOneFile 函数巧妙地避开自身,选择性地感染PE文件,一旦触发,将宿主程序、感染标记和主图标无缝嵌入。编写者的精细操作可见一斑。 源代码中,一个关键部分展示了病毒如何在感染后破坏文件,SmashFile通过插入乱码来混淆和破坏目标文件。执行完毕后,程序会删除目标文件并检测可写驱动器,进一步扩大感染范围。 最后,主程序流程开始,根据操作系统类型(Win9x或WinNT)采取不同的策略。在Win9x系统上,病毒会注册自身服务,而在WinNT系统中,它会分离病毒文件、设置启动参数并创建新进程,同时执行感染和邮件发送操作。 熊猫烧香的源代码揭示出其复杂的策略和破坏力,提醒我们在面对此类恶意软件时,网络安全的防线必须更加坚固。每个函数和操作都反映了病毒制造者背后的精心策划,为网络安全专家提供了深入研究和防范的线索。ELF 文件解析 1-前述+文件头分析
明确参考文件
一切理解建立在官方文档及源码基础上,源码是可靠参考,正文将阐述概念、意义,并配合简单、有代表性的示例。官方文档链接:Tool Interface Standard (TIS) Executable and Linking Format (ELF) Specification Version 1.2。ELF源码文件位于/usr/include/elf.h。
ELF文件分析与学习方法
终端命令如readelf用于快速查看文件内容信息,objdump用于解析二进制文件,hexdump以十六进制显示文件内容。推荐使用 Editor,推倒胡源码下载一个专业的文本编辑器和十六进制编辑器,便于查看并研究ELF文件。
学习方法:生成ELF文件,对照官方文档、elf.h源码,结合终端命令分析。掌握基本概念及部分间逻辑关系,通过计算验证理解。快速上手或概述了解,终端命令足够。
具体的终端命令在所有Linux系统中自带,无需安装。查看方法:终端中使用$命令-h进行查询。ELF文件分析模板在 Editor中可找到,模板免费,使用方法不赘述。
样例构建
使用gcc生成位ELF可执行文件,过程包括配置、编译、链接等步骤。样例适用于学习,具体构建过程在此不赘述。
ELF文件简介
ELF是可执行可连接格式,包含三种主要类型文件。ELF文件用于程序链接和执行。
ELF文件结构概述
ELF文件分为链接视图与运行视图,视图角度不同,关注内容也不同。链接视图侧重文件结构细节,运行视图考虑内存装载优化。
ELF文件结构包含:文件头、节、程序头表、节头表。文件头提供基本信息,节是链接过程中的数据容器,程序头表在运行时指导系统创建进程镜像,节头表包含所有节信息。
两种视图依据目标文件用途划分,链接视图关注功能模块划分,运行视图考虑内存装载。ELF文件结构清晰,通过分级管理文件内容。
数据成员命名规则遵循规律性组合形式,庄家统计指标源码便于理解。ELF文件使用结构体定义数据结构,数据成员通过宏定义定义,不依赖机器字长,与创建时的主机无关。
以分析Elf_Addr字长为例,展示分析方法:从typedef到最终的数据类型定义,直至通用数据类型。数据结构中每个成员字节长度从源码直接获取。
ELF文件头描述文件基本信息,包括识别标志、位数、数据编码格式、版本等,用于文件解析和系统兼容。
ELF文件头由一个Elf_Ehdr数据结构组成,e_ident数组包含识别信息,每个成员提供特定数据。e_type指定文件类型,e_machine指定处理器架构,e_version指明文件版本。
e_entry表示程序入口虚拟地址,e_phoff和e_shoff分别指示程序头表和节头表偏移量,e_shstrndx指示节名字表的索引。
通过ELF文件头,掌握文件各部分间关系,构建结构图。对于ELF可执行文件,使用 Editor或终端命令进行深入分析。
针对样例文件hello的文件头分析,使用 Editor导入模板或终端命令查看,结果与自行分析一致。
至此,ELF文件结构与文件头部分介绍完毕。下一部分将深入探讨ELF文件的节。
请问你有MATLAB交通标志检测与识别的源代码么,谢谢
思路: fill函数(help一下),定义一下多边形的边,阿迪达斯的标志三条的不难,下面的字(text)然后把字体改成相对大小的(set);阿迪达斯的标志三叶草的函数比较多,是个苦力活恐怕函数都得一个一个的输入,函数定义区间一个一个控制,自己做吧
qr code是什么?
基础知识
首先,我们先说一下二维码一共有个尺寸。ene 指标 公式源码官方叫版本Version。Version 1是 x 的矩阵,Version 2是 x 的矩阵,Version 3是的尺寸,每增加一个version,就会增加4的尺寸,公式是:(V-1)*4 + (V是版本号) 最高Version ,(-1)*4+ = ,所以最高是 x 的正方形。
下面我们看看一个二维码的样例:
定位图案
Position Detection Pattern是定位图案,用于标记二维码的矩形大小。这三个定位图案有白边叫Separators for Postion Detection Patterns。之所以三个而不是四个意思就是三个就可以标识一个矩形了。
Timing Patterns也是用于定位的。原因是二维码有种尺寸,尺寸过大了后需要有根标准线,不然扫描的时候可能会扫歪了。
Alignment Patterns 只有Version 2以上(包括Version2)的二维码需要这个东东,同样是为了定位用的。
功能性数据
Format Information 存在于所有的尺寸中,用于存放一些格式化数据的。
Version Information 在 >= Version 7以上,需要预留两块3 x 6的区域存放一些版本信息。
数据码和纠错码
除了上述的那些地方,剩下的地方存放 Data Code 数据码 和 Error Correction Code 纠错码。
数据编码
我们先来说说数据编码。QR码支持如下的编码:
Numeric mode 数字编码,从0到9。如果需要编码的数字的个数不是3的倍数,那么,最后剩下的1或2位数会被转成4或7bits,则其它的每3位数字会被编成 ,,bits,编成多长还要看二维码的尺寸(下面有一个表Table 3说明了这点)
Alphanumeric mode 字符编码。包括 0-9,大写的A到Z(没有小写),以及符号$ % * + – . / : 包括空格。这些字符会映射成一个字符索引表。如下所示:(其中的SP是空格,Char是字符,Value是其索引值) 编码的过程是把字符两两分组,然后转成下表的进制,然后转成bits的二进制,如果最后有一个落单的,那就转成6bits的二进制。而编码模式和字符的个数需要根据不同的Version尺寸编成9, 或个二进制(如下表中Table 3)
Byte mode, 字节编码,可以是0-的ISO--1字符。有些二维码的扫描器可以自动检测是否是UTF-8的编码。
Kanji mode 这是日文编码,也是双字节编码。同样,也可以用于中文编码。日文和汉字的编码会减去一个值。如:在0X to 0X9FFC中的字符会减去,在0XE到0XEBBF中的字符要减去0XC,然后把结果前两个进制位拿出来乘以0XC0,然后再加上后两个进制位,最后转成bit的编码。如下图示例:
Extended Channel Interpretation (ECI) mode 主要用于特殊的字符集。并不是所有的扫描器都支持这种编码。
Structured Append mode 用于混合编码,也就是说,这个二维码中包含了多种编码格式。
FNC1 mode 这种编码方式主要是给一些特殊的工业或行业用的。比如GS1条形码之类的。
简单起见,后面三种不会在本文 中讨论。
下面两张表中,
Table 2 是各个编码格式的“编号”,这个东西要写在Format Information中。注:中文是
Table 3 表示了,不同版本(尺寸)的二维码,对于,数字,字符,字节和Kanji模式下,对于单个编码的2进制的位数。(在二维码的规格说明书中,有各种各样的编码规范表,后面还会提到)
下面我们看几个示例,
示例一:数字编码
在Version 1的尺寸下,纠错级别为H的情况下,编码:
1. 把上述数字分成三组:
2. 把他们转成二进制: 转成 ; 转成 ; 转成 。
3. 把这三个二进制串起来:
4. 把数字的个数转成二进制 (version 1-H是 bits ): 8个数字的二进制是
5. 把数字编码的标志和第4步的编码加到前面:
示例二:字符编码
在Version 1的尺寸下,纠错级别为H的情况下,编码: AC-
1. 从字符索引表中找到 AC- 这五个字条的索引 (,,,4,2)
2. 两两分组: (,) (,4) (2)
3.把每一组转成bits的二进制:
(,) *+ 等于 转成 (,4) *+4 等于 转成 (2) 等于 2 转成
4. 把这些二进制连接起来:
5. 把字符的个数转成二进制 (Version 1-H为9 bits ): 5个字符,5转成
6. 在头上加上编码标识 和第5步的个数编码:
结束符和补齐符
假如我们有个HELLO WORLD的字符串要编码,根据上面的示例二,我们可以得到下面的编码,
编码
字符数
HELLO WORLD的编码
我们还要加上结束符:
编码
字符数
HELLO WORLD的编码
结束
按8bits重排
如果所有的编码加起来不是8个倍数我们还要在后面加上足够的0,比如上面一共有个bits,所以,我们还要加上2个0,然后按8个bits分好组:
补齐码(Padding Bytes)
最后,如果如果还没有达到我们最大的bits数的限制,我们还要加一些补齐码(Padding Bytes),Padding Bytes就是重复下面的两个bytes: (这两个二进制转成十进制是和,我也不知道为什么,只知道Spec上是这么写的)关于每一个Version的每一种纠错级别的最大Bits限制,可以参看QR Code Spec的第页到页的Table-7一表。
假设我们需要编码的是Version 1的Q纠错级,那么,其最大需要个bits,而我们上面只有个bits,所以,还需要补个bits,也就是需要3个Padding Bytes,我们就添加三个,于是得到下面的编码:
上面的编码就是数据码了,叫Data Codewords,每一个8bits叫一个codeword,我们还要对这些数据码加上纠错信息。
纠错码
上面我们说到了一些纠错级别,Error Correction Code Level,二维码中有四种级别的纠错,这就是为什么二维码有残缺还能扫出来,也就是为什么有人在二维码的中心位置加入图标。
错误修正容量
L水平 7%的字码可被修正
M水平 %的字码可被修正
Q水平 %的字码可被修正
H水平 %的字码可被修正
那么,QR是怎么对数据码加上纠错码的?首先,我们需要对数据码进行分组,也就是分成不同的Block,然后对各个Block进行纠错编码,对于如何分组,我们可以查看QR Code Spec的第页到页的Table-到Table-的定义表。注意最后两列:
Number of Error Code Correction Blocks :需要分多少个块。
Error Correction Code Per Blocks:每一个块中的code个数,所谓的code的个数,也就是有多少个8bits的字节。
举个例子:上述的Version 5 + Q纠错级:需要4个Blocks(2个Blocks为一组,共两组),头一组的两个Blocks中各个bits数据 + 各 9个bits的纠错码(注:表中的codewords就是一个8bits的byte)(再注:最后一例中的(c, k, r )的公式为:c = k + 2 * r,因为后脚注解释了:纠错码的容量小于纠错码的一半)
下图给一个5-Q的示例(因为二进制写起来会让表格太大,所以,我都用了十进制,我们可以看到每一块的纠错码有个codewords,也就是个8bits的二进制数)
组
块
数据
对每个块的纠错码
1 1 6 6
2 7 7 6
2 1 7 6 7
2 6 5 2
注:二维码的纠错码主要是通过Reed-Solomon error correction(里德-所罗门纠错算法)来实现的。对于这个算法,对于我来说是相当的复杂,里面有很多的数学计算,比如:多项式除法,把1-的数映射成2的n次方(0<=n<=)的伽罗瓦域Galois Field之类的神一样的东西,以及基于这些基础的纠错数学公式,因为我的数据基础差,对于我来说太过复杂,所以我一时半会儿还有点没搞明白,还在学习中,所以,我在这里就不展开说这些东西了。还请大家见谅了。(当然,如果有朋友很明白,也繁请教教我)
最终编码
穿插放置
如果你以为我们可以开始画图,你就错了。二维码的混乱技术还没有玩完,它还要把数据码和纠错码的各个codewords交替放在一起。如何交替呢,规则如下:
对于数据码:把每个块的第一个codewords先拿出来按顺度排列好,然后再取第一块的第二个,如此类推。如:上述示例中的Data Codewords如下:
块 1 6 6
块 2 7 7 6
块 3 7 6 7
块 4 6
我们先取第一列的:, , ,
然后再取第二列的:, , , , ,, ,
如此类推:, , , , ,, , ……… ……… ,,6,,,7,
对于纠错码,也是一样:
块 1
块 2
块 3
块 4 5 2
和数据码取的一样,得到:,,,,,,,,…… …… ,,,
然后,再把这两组放在一起(纠错码放在数据码之后)得到:
, , , , , , , , , , , , , 7, , , , , , , , , 7, 6, , , , , , 7, , , , , , , , , , , 6, , , , , , 6, , 6, , , , , , , , , 6, , , 7, , , , , , , , , , , , , 5, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , 2, , , , , , , , , , , , , , , ,
这就是我们的数据区。
Remainder Bits
最后再加上Reminder Bits,对于某些Version的QR,上面的还不够长度,还要加上Remainder Bits,比如:上述的5Q版的二维码,还要加上7个bits,Remainder Bits加零就好了。关于哪些Version需要多少个Remainder bit,可以参看QR Code Spec的第页的Table-1的定义表。
画二维码图
Position Detection Pattern
首先,先把Position Detection图案画在三个角上。(无论Version如何,这个图案的尺寸就是这么大)
Alignment Pattern
然后,再把Alignment图案画上(无论Version如何,这个图案的尺寸就是这么大)
关于Alignment的位置,可以查看QR Code Spec的第页的Table-E.1的定义表(下表是不完全表格)
下图是根据上述表格中的Version8的一个例子(6,,)
Timing Pattern
接下来是Timing Pattern的线(这个不用多说了)
Format Information
再接下来是Formation Information,下图中的蓝色部分。
Format Information是一个个bits的信息,每一个bit的位置如下图所示:(注意图中的Dark Module,那是永远出现的)
这个bits中包括:
5个数据bits:其中,2个bits用于表示使用什么样的Error Correction Level, 3个bits表示使用什么样的Mask
个纠错bits。主要通过BCH Code来计算
然后个bits还要与做XOR操作。这样就保证不会因为我们选用了的纠错级别和的Mask,从而造成全部为白色,这会增加我们的扫描器的图像识别的困难。
下面是一个示例:
关于Error Correction Level如下表所示:
关于Mask图案如后面的Table 所示。
Version Information
再接下来是Version Information(版本7以后需要这个编码),下图中的蓝色部分。
Version Information一共是个bits,其中包括6个bits的版本号以及个bits的纠错码,下面是一个示例:
而其填充位置如下:
数据和数据纠错码
然后是填接我们的最终编码,最终编码的填充方式如下:从左下角开始沿着红线填我们的各个bits,1是黑色,0是白色。如果遇到了上面的非数据区,则绕开或跳过。
掩码图案
这样下来,我们的图就填好了,但是,也许那些点并不均衡,如果出现大面积的空白或黑块,会告诉我们扫描识别的困难。所以,我们还要做Masking操作(靠,还嫌不复杂)QR的Spec中说了,QR有8个Mask你可以使用,如下所示:其中,各个mask的公式在各个图下面。所谓mask,说白了,就是和上面生成的图做XOR操作。Mask只会和数据区进行XOR,不会影响功能区。(注:选择一个合适的Mask也是有算法的)
其Mask的标识码如下所示:(其中的i,j分别对应于上图的x,y)
下面是Mask后的一些样子,我们可以看到被某些Mask XOR了的数据变得比较零散了。
Mask过后的二维码就成最终的图了。
好了,大家可以去尝试去写一下QR的编码程序,当然,你可以用网上找个Reed Soloman的纠错算法的库,或是看看别人的源代码是怎么实现这个繁锁的编码。
2024-11-30 18:37
2024-11-30 17:57
2024-11-30 17:43
2024-11-30 17:21
2024-11-30 17:13